Advertisement for orthosearch.org.uk
Results 41 - 60 of 84
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1248 - 1255
1 Oct 2019
Pineda A Pabbruwe MB Kop AM Vlaskovsky P Hurworth M

Aims

The aim of this study was to conduct the largest low contact stress (LCS) retrieval study to elucidate the failure mechanisms of the Porocoat and Duofix femoral component. The latter design was voluntarily recalled by the manufacturer.

Materials and Methods

Uncemented LCS explants were divided into three groups: Duofix, Porocoat, and mixed. Demographics, polyethylene wear, tissue ingrowth, and metallurgical analyses were performed.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 535 - 543
1 Nov 2019
Mohammad HR Campi S Kennedy JA Judge A Murray DW Mellon SJ

Objectives

The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process.

Methods

A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.


Bone & Joint Research
Vol. 7, Issue 11 | Pages 595 - 600
1 Nov 2018
Bergiers S Hothi HS Henckel J Eskelinen A Skinner J Hart A

Objectives

Previous studies have suggested that metal-on-metal (MoM) Pinnacle (DePuy Synthes, Warsaw, Indiana) hip arthroplasties implanted after 2006 exhibit higher failure rates. This was attributed to the production of implants with reduced diametrical clearances between their bearing surfaces, which, it was speculated, were outside manufacturing tolerances. This study aimed to better understand the performance of Pinnacle Systems manufactured before and after this event.

Methods

A total of 92 retrieved MoM Pinnacle hips were analyzed, of which 45 were implanted before 2007, and 47 from 2007 onwards. The ‘pre-2007’ group contained 45 implants retrieved from 21 male and 24 female patients, with a median age of 61.3 years (interquartile range (IQR) 57.1 to 65.5); the ‘2007 onwards’ group contained 47 implants retrieved from 19 male and 28 female patients, with a median age of 61.8 years (IQR 58.5 to 67.8). The volume of material lost from their bearing and taper surfaces was measured using coordinate and roundness measuring machines. These outcomes were then compared statistically using linear regression models, adjusting for potentially confounding factors.


Bone & Joint 360
Vol. 8, Issue 2 | Pages 21 - 23
1 Apr 2019


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1534 - 1541
1 Dec 2019
Lagerbäck T Möller H Gerdhem P

Aims

The purpose of this study was to investigate the risk of additional surgery in the lumbar spine and to describe long-term changes in patient-reported outcomes after surgery for lumbar disc herniation in adolescents and young adults.

Patients and Methods

We conducted a retrospective study design on prospectively collected data from a national quality register. The 4537 patients were divided into two groups: adolescents (≤ 18 years old, n = 151) and young adults (19 to 39 years old, n = 4386). The risk of additional lumbar spine surgery was surveyed for a mean of 11.4 years (6.0 to 19.3) in all 4537 patients. Long-term patient-reported outcomes were available at a mean of 7.2 years (5.0 to 10.0) in up to 2716 patients and included satisfaction, global assessment for leg and back pain, Oswestry Disability Index, visual analogue scale for leg and back pain, EuroQol five-dimension questionnaire (EQ-5D), and 36-Item Short-Form Health Survey (SF-36) Mental Component Summary and Physical Component Summary scores. Statistical analyses were performed with Cox proportional hazard regression, chi-squared test, McNemar’s test, Welch–Satterthwaite t-test, and Wilcoxon’s signed-rank test.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 365 - 371
1 Apr 2019
Nam D Salih R Nahhas CR Barrack RL Nunley RM

Aims

Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design.

Patients and Methods

This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m2 and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (sd 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral BMD were measured at baseline, as well as at one and two years postoperatively. Power analysis indicated 40 patients necessary to demonstrate a five-fold increase in cobalt levels from baseline (alpha = 0.05, beta = 0.80). A mixed model with repeated measures was used for statistical analysis.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 44 - 49
1 Jan 2018
Berstock JR Whitehouse MR Duncan CP

Aims

To present a surgically relevant update of trunnionosis.

Materials and Methods

Systematic review performed April 2017.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1310 - 1319
1 Oct 2018
Langton DJ Wells SR Joyce TJ Bowsher JG Deehan D Green S Nargol AVF Holland JP

Aims

There are limited published data detailing the volumetric material loss from tapers of conventional metal-on-polyethylene (MoP) total hip arthroplasties (THAs). Our aim was to address this by comparing the taper wear rates measured in an explanted cohort of the widely used Exeter THA with those measured in a group of metal-on-metal (MoM) THAs.

Patients and Methods

We examined an existing retrieval database to identify all Exeter V40 and Universal MoP THAs. Volumetric wear analysis of the taper surfaces was conducted using previously validated methodology. These values were compared with those obtained from a series of MoM THAs using non-parametric statistical methodology. A number of patient and device variables were accounted for using multiple regression modelling.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 898 - 902
1 Jul 2018
Lachiewicz PF O’Dell JA

Aims

To report our experience with trunnion corrosion following metal-on-polyethylene total hip arthroplasty, in particular to report the spectrum of presentation and determine the mean time to presentation.

Patients and Methods

We report the presenting symptoms and signs, intraoperative findings, and early results and complications of operative treatment in nine patients with a mean age of 74 years (60 to 86). The onset of symptoms was at a mean of seven years (3 to 18) after index surgery.


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1286 - 1289
1 Oct 2017
Rajpura A Board TN Siney PD Wynn Jones H Williams S Dabbs L Wroblewski BM

Aims

Our aim in this study was to describe a continuing review of 11 total hip arthroplasties using 22.225 mm Alumina ceramic femoral heads on a Charnley flanged femoral component, articulating against a silane crosslinked polyethylene.

Patients and Methods

Nine patients (11 THAs) were reviewed at a mean of 27.5 years (26 to 28) post-operatively. Outcome was assessed using the d’Aubigne and Postel, and Charnley scores and penetration was recorded on radiographs. In addition, the oxidation of a 29-year-old shelf-aged acetabular component was analysed.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives

Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces.

Methods

In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons.


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 134 - 142
1 Feb 2018
Hexter AT Hislop SM Blunn GW Liddle AD

Aims

Periprosthetic joint infection (PJI) is a serious complication of total hip arthroplasty (THA). Different bearing surface materials have different surface properties and it has been suggested that the choice of bearing surface may influence the risk of PJI after THA. The objective of this meta-analysis was to compare the rate of PJI between metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), and ceramic-on-ceramic (CoC) bearings.

Patients and Methods

Electronic databases (Medline, Embase, Cochrane library, Web of Science, and Cumulative Index of Nursing and Allied Health Literature) were searched for comparative randomized and observational studies that reported the incidence of PJI for different bearing surfaces. Two investigators independently reviewed studies for eligibility, evaluated risk of bias, and performed data extraction. Meta-analysis was performed using the Mantel–Haenzel method and random-effects model in accordance with methods of the Cochrane group.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 3 - 6
1 Nov 2013
Wassef AJ Schmalzried TP

A modular femoral head–neck junction has practical advantages in total hip replacement. Taper fretting and corrosion have so far been an infrequent cause of revision. The role of design and manufacturing variables continues to be debated. Over the past decade several changes in technology and clinical practice might result in an increase in clinically significant taper fretting and corrosion. Those factors include an increased usage of large diameter (36 mm) heads, reduced femoral neck and taper dimensions, greater variability in taper assembly with smaller incision surgery, and higher taper stresses due to increased patient weight and/or physical activity. Additional studies are needed to determine the role of taper assembly compared with design, manufacturing and other implant variables.

Cite this article: Bone Joint J 2013;95-B, Supple A:3–6.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 200 - 205
1 Sep 2013
Amarasekera HW Campbell PC Parsons N Achten J Masters J Griffin DR Costa ML

Objectives

We aimed to determine the effect of surgical approach on the histology of the femoral head following resurfacing of the hip.

Methods

We performed a histological assessment of the bone under the femoral component taken from retrieval specimens of patients having revision surgery following resurfacing of the hip. We compared the number of empty lacunae in specimens from patients who had originally had a posterior surgical approach with the number in patients having alternative surgical approaches.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1024 - 1030
1 Aug 2015
Whitehouse MR Endo M Zachara S Nielsen TO Greidanus NV Masri BA Garbuz DS Duncan CP

Adverse reaction to wear and corrosion debris is a cause for concern in total hip arthroplasty (THA). Modular junctions are a potential source of such wear products and are associated with secondary pseudotumour formation.

We present a consecutive series of 17 patients treated at our unit for this complication following metal-on-highly cross-linked polyethylene (MoP) THA. We emphasise the risk of misdiagnosis as infection, and present the aggregate laboratory results and pathological findings in this series.

The clinical presentation was pain, swelling or instability. Solid, cystic and mixed soft-tissue lesions were noted on imaging and confirmed intra-operatively. Corrosion at the head–neck junction was noted in all cases. No bacteria were isolated on multiple pre- and intra-operative samples yet the mean erythrocyte sedimentation rate was 49 (9 to 100) and C-reactive protein 32 (0.6 to 106) and stromal polymorphonuclear cell counts were noted in nine cases.

Adverse soft–tissue reactions can occur in MoP THA owing to corrosion products released from the head–neck junction. The diagnosis should be carefully considered when investigating pain after THA. This may avoid the misdiagnosis of periprosthetic infection with an unidentified organism and mitigate the unnecessary management of these cases with complete single- or two-stage exchange.

Cite this article: Bone Joint J 2015;97-B:1024–1030.


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 911 - 916
1 Jul 2015
Del Balso C Teeter MG Tan SC Lanting BA Howard JL

Tribocorrosion at the head–neck taper interface – so-called ‘taperosis’ – may be a source of metal ions and particulate debris in metal-on-polyethylene total hip arthroplasty (THA).

We examined the effect of femoral head length on fretting and corrosion in retrieved head–neck tapers in vivo for a minimum of two years (mean 8.7 years; 2.6 to 15.9). A total of 56 femoral heads ranging from 28 mm to 3 mm to 28 mm + 8 mm, and 17 femoral stems featuring a single taper design were included in the study. Fretting and corrosion were scored in three horizontally oriented concentric zones of each taper by stereomicroscopy.

Head length was observed to affect fretting (p = 0.03), with 28 mm + 8 mm femoral heads showing greater total fretting scores than all other head lengths. The central zone of the femoral head bore taper was subject to increased fretting damage (p = 0.01), regardless of head length or stem offset. High-offset femoral stems were associated with greater total fretting of the bore taper (p = 0.04).

Increased fretting damage is seen with longer head lengths and high-offset femoral stems, and occurs within a central concentric zone of the femoral head bore taper. Further investigation is required to determine the effect of increased head size, and variations in head–neck taper design.

Cite this article: Bone Joint J 2015; 97-B:911–16.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 608 - 615
1 May 2011
Bolland BJRF Culliford DJ Langton DJ Millington JPS Arden NK Latham JM

This study reports the mid-term results of a large-bearing hybrid metal-on-metal total hip replacement in 199 hips (185 patients) with a mean follow-up of 62 months (32 to 83).

Two patients died of unrelated causes and 13 were lost to follow-up. In all, 17 hips (8.5%) have undergone revision, and a further 14 are awaiting surgery. All revisions were symptomatic. Of the revision cases, 14 hips showed evidence of adverse reactions to metal debris. The patients revised or awaiting revision had significantly higher whole blood cobalt ion levels (p = 0.001), but no significant difference in acetabular component size or position compared with the unrevised patients. Wear analysis (n = 5) showed increased wear at the trunnion-head interface, normal levels of wear at the articulating surfaces and evidence of corrosion on the surface of the stem.

The cumulative survival rate, with revision for any reason, was 92.4% (95% confidence interval 87.4 to 95.4) at five years. Including those awaiting surgery, the revision rate would be 15.1% with a cumulative survival at five years of 89.6% (95% confidence interval 83.9 to 93.4).

This hybrid metal-on-metal total hip replacement series has shown an unacceptably high rate of failure, with evidence of high wear at the trunnion-head interface and passive corrosion of the stem surface. This raises concerns about the use of large heads on conventional 12/14 tapers.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 23 - 26
1 Nov 2014
Cooper HJ Della Valle CJ

Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip replacements (THR). Hence, there is great interest in maximising stability to prevent this complication. Head size has been recognised to have a strong influence on the risk of dislocation post-operatively. As femoral head size increases, stability is augmented, secondary to an increase in impingement-free range of movement. Larger head sizes also greatly increase the ‘jump distance’ required for the head to dislocate in an appropriately positioned cup. Level-one studies support the use of larger diameter heads as they decrease the risk of dislocation following primary and revision THR. Highly cross-linked polyethylene has allowed us to increase femoral head size, without a marked increase in wear. However, the thin polyethylene liners necessary to accommodate larger heads may increase the risk of liner fracture and larger heads have also been implicated in causing soft-tissue impingement resulting in groin pain. Larger diameter heads also impart larger forces on the femoral trunnion, which may contribute to corrosion, metal release, and adverse local tissue reactions. Alternative large bearings including large ceramic heads and dual mobility bearings may mitigate some of these risks, and several of these devices have been used with clinical success.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):23–6.


Bone & Joint 360
Vol. 3, Issue 3 | Pages 16 - 18
1 Jun 2014

The June 2014 Hip & Pelvis Roundup360 looks at: Modular femoral necks: early signs are not good; is corrosion to blame for modular neck failures; metal-on-metal is not quite a closed book; no excess failures in fixation of displaced femoral neck fractures; noise no problem in hip replacement; heterotopic ossification after hip arthroscopy: are NSAIDs the answer?; thrombotic and bleeding events surprisingly low in total joint replacement; and the elephant in the room: complications and surgical volume.


Bone & Joint 360
Vol. 3, Issue 3 | Pages 9 - 13
1 Jun 2014
Waterson HB Philips JRA Mandalia VI Toms AD

Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA.

This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.