Advertisement for orthosearch.org.uk
Results 41 - 60 of 492
Results per page:
Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives. Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM). Methods. A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest. Results. Varus malalignment decreased VOCB but increased MSCB in both implants, more so in the AP implant. Varus malalignment of 10° reduced the VOCB by 10% and 3% in AP and MB implants but increased the MSCB by 14% and 13%, respectively. Valgus malalignment of 5° increased the VOCB by 8% and 4% in AP and MB implants, with reductions in MSCB of 7% and 10%, respectively. Sagittal malalignment displayed negligible effects. Well-aligned AP implants displayed greater VOCB than malaligned MB implants. Conclusion. All-polyethylene implants are more sensitive to coronal plane malalignments than MB implants are; varus malalignment reduced cancellous bone strain but increased anteromedial cortical bone stress. Sagittal plane malalignment has a negligible effect on bone strain. Cite this article: I. Danese, P. Pankaj, C. E. H. Scott. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: A comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res 2019;8:55–64. DOI: 10.1302/2046-3758.82.BJR-2018-0186.R2


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. Materials and Methods. A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix). Results. For both plate types, long spans increased IFM but did not substantially alter peak plate stress. The custom plate increased axial and shear IFM values by up to 24% and 47%, respectively, compared with the TomoFix. In all cases, a callus stiffness of 528 MPa was required to reduce plate stress below the fatigue strength of titanium alloy. Conclusion. We demonstrate that larger bridging spans in opening wedge HTO increase IFM without substantially increasing plate stress. The results indicate, however, that callus healing is required to prevent fatigue failure. Cite this article: A. R. MacLeod, G. Serrancoli, B. J. Fregly, A. D. Toms, H. S. Gill. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 2018;7:639–649. DOI: 10.1302/2046-3758.712.BJR-2018-0035.R1


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 14 - 17
1 Jan 2016
Sentuerk U von Roth P Perka C

The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):14–17


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 120 - 125
1 Jan 2011
Lim H Bae J Song H Teoh SH Kim H Kum D

Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims

Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM.

Methods

This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 659 - 667
1 Sep 2023
Nasser AAHH Osman K Chauhan GS Prakash R Handford C Nandra RS Mahmood A

Aims

Periprosthetic fractures (PPFs) following hip arthroplasty are complex injuries. This study evaluates patient demographic characteristics, management, outcomes, and risk factors associated with PPF subtypes over a decade.

Methods

Using a multicentre collaborative study design, independent of registry data, we identified adults from 29 centres with PPFs around the hip between January 2010 and December 2019. Radiographs were assessed for the Unified Classification System (UCS) grade. Patient and injury characteristics, management, and outcomes were compared between UCS grades. A multinomial logistic regression was performed to estimate relative risk ratios (RRR) of variables on UCS grade.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1372 - 1376
1 Dec 2024
Kennedy JW Meek RMD

Hip fractures pose a major global health challenge, leading to high rates of morbidity and mortality, particularly among the elderly. With an ageing population, the incidence of these injuries is rising, exerting significant pressure on healthcare systems worldwide. Despite substantial research aimed at establishing best practice, several key areas remain the subject of ongoing debate. This article examines the latest evidence on the place of arthroplasty in the surgical treatment of hip fractures, with a particular focus on the choice of implant, the use of cemented versus uncemented fixation, and advances in perioperative care.

Cite this article: Bone Joint J 2024;106-B(12):1372–1376.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 87 - 93
2 Feb 2024
Wolf O Ghukasyan Lakic T Ljungdahl J Sundkvist J Möller M Rogmark C Mukka S Hailer NP

Aims

Our primary aim was to assess reoperation-free survival at one year after the index injury in patients aged ≥ 75 years treated with internal fixation (IF) or arthroplasty for undisplaced femoral neck fractures (uFNFs). Secondary outcomes were reoperations and mortality analyzed separately.

Methods

We retrieved data on all patients aged ≥ 75 years with an uFNF registered in the Swedish Fracture Register from 2011 to 2018. The database was linked to the Swedish Arthroplasty Register and the National Patient Register to obtain information on comorbidity, mortality, and reoperations. Our primary outcome, reoperation, or death at one year was analyzed using restricted mean survival time, which gives the mean time to either event for each group separately.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 154 - 161
28 Mar 2023
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. Methods. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN). Results. Screw fixation alone resulted in up to three times more movement (p = 0.006), especially when load was increased to 100% (p < 0.001), than with the other two fixation methods (C and SC). No significant difference was noted when a screw was added to the cement fixation. Increased load resulted in increased relative movement between the interfaces in all fixation methods (p < 0.001). Conclusion. Cement fixation between a porous titanium acetabular component and augment is associated with less relative movement than screw fixation alone for all implant interfaces, particularly with increasing loads. Adding a screw to the cement fixation did not offer any significant advantage. These results also show that the stability of the tested acetabular component/augment interface affects the stability of the construct that is affixed to the bone. Cite this article: N. A. Beckmann, R. G. Bitsch, M. Gondan, M. Schonhoff, S. Jaeger. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res 2018;7:282–288. DOI: 10.1302/2046-3758.74.BJR-2017-0198.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 121 - 126
1 Jan 2007
Jensen TB Overgaard S Lind M Rahbek O Bünger C Søballe K

Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own. ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor


Aims

The aims of this study were to evaluate the incidence of reoperation (all cause and specifically for periprosthetic femoral fracture (PFF)) and mortality, and associated risk factors, following a hemiarthroplasty incorporating a cemented collarless polished taper slip stem (PTS) for management of an intracapsular hip fracture.

Methods

This retrospective study included hip fracture patients aged 50 years and older treated with Exeter (PTS) bipolar hemiarthroplasty between 2019 and 2022. Patient demographics, place of domicile, fracture type, delirium status, American Society of Anesthesiologists (ASA) grade, length of stay, and mortality were collected. Reoperation and mortality were recorded up to a median follow-up of 29.5 months (interquartile range 12 to 51.4). Cox regression was performed to evaluate independent risk factors associated with reoperation and mortality.


Objectives. Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs. Methods. Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests. Results. The method of loading was found to affect the gap stiffness strongly (by up to six times) but also the magnitude of the plate stress and the location and magnitude of strains at the bone-screw interface. Conclusions. This study demonstrates that the method of loading is responsible for much of the difference in reported stiffness values in the literature. It also shows that previous contradictory findings, such as the influence of working length and very large differences in failure loads, can be readily explained by the choice of loading condition. Cite this article: A. MacLeod, A. H. R. W. Simpson, P. Pankaj. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone Joint Res 2018;7:111–120. DOI: 10.1302/2046-3758.71.BJR-2017-0074.R2


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 220 - 223
1 Mar 2024
Kayani B Luo TD Haddad FS


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 351 - 357
1 May 2017
Takahashi E Kaneuji A Tsuda R Numata Y Ichiseki T Fukui K Kawahara N

Objectives. Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep. Methods. We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem. Results. A strong positive correlation was observed between mean cement thickness and stem subsidence in the CT slices on the balls. In the small stems, the balls moved downward to almost the same extent as the stem. There was a significant negative correlation between cement thickness and the horizontal:downward ratio of ball movement. Conclusion. Collarless polished tapered stems with thicker cement mantles resulted in greater subsidence of both stem and cement. This suggests that excessive thickness of the cement mantle may interfere with effective radial cement creep. Cite this article: E. Takahashi, A. Kaneuji, R. Tsuda, Y. Numata, T. Ichiseki, K. Fukui, N. Kawahara. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental? Bone Joint Res 2017;6:–357. DOI: 10.1302/2046-3758.65.BJR-2017-0028.R1


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 307 - 311
1 Apr 2024
Horner D Hutchinson K Bretherton CP Griffin XL


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1681 - 1688
1 Dec 2017
Jones CW Shatrov J Jagiello JM Millington S Hong A Boyle R Stalley PD

Aims. We present a retrospective review of patients treated with extracorporeally irradiated allografts for primary and secondary bone tumours with the mid- and long-term survivorship and the functional and radiographic outcomes. Patients and Methods. A total of 113 of 116 (97.4%) patients who were treated with extracorporeally irradiated allografts between 1996 and 2014 were followed up. Forms of treatment included reconstructions, prostheses and composite reconstructions, both with and without vascularised grafts. Survivorship was determined by the Kaplan-Meier method. Clinical outcomes were assessed using the Musculoskeletal Tumor Society (MSTS) scoring system, the Toronto Extremity Salvage Score (TESS) and Quality of Life-C30 (QLQ-30) measures. Radiographic outcomes were assessed using the International Society of Limb Salvage (ISOLS) radiographic scoring system. Results. There were 61 (54%) men with a mean age of 22 years (6 to 70) and 52 (46%) women with a mean age of 26 years (3 to 85). There were 23 deaths. The five-year patient survivorship was 82.3% and the ten-year patient survivorship was 79.6%. The mean follow-up of the 90 surviving patients was 80.3 months (2 to 207). At the last follow-up, 105 allografts (92.9%) were still in place or had been at the time of death; eight (7%) had failed due to infection, local recurrence or fracture. Outcome scores were comparable with or superior to those in previous studies. The mean outcome scores were: MSTS 79% (. sd. 8); TESS 83% (. sd. 19); QLQ 82% (. sd. 16); ISOLS 80.5% (. sd. 19). . Pearson correlation analysis showed a strong relationship between the MSTS and ISOLS scores (r = 0.71, p < 0.001). Conclusion. This study shows that extracorporeal irradiation is a versatile reconstructive technique for dealing with large defects after the resection of bone tumours with good functional and radiographic outcomes. Functional outcomes as measured by MSTS, TESS and QLQ-30 were strongly correlated to radiographic outcomes. Cite this article: Bone Joint J 2017;99-B:1681–8


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 144 - 150
1 Feb 2024
Lynch Wong M Robinson M Bryce L Cassidy R Lamb JN Diamond O Beverland D

Aims

The aim of this study was to determine both the incidence of, and the reoperation rate for, postoperative periprosthetic femoral fracture (POPFF) after total hip arthroplasty (THA) with either a collared cementless (CC) femoral component or a cemented polished taper-slip (PTS) femoral component.

Methods

We performed a retrospective review of a consecutive series of 11,018 THAs over a ten-year period. All POPFFs were identified using regional radiograph archiving and electronic care systems.