Advertisement for orthosearch.org.uk
Results 41 - 57 of 57
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 435 - 442
1 Apr 2019
Zambianchi F Franceschi G Rivi E Banchelli F Marcovigi A Nardacchione R Ensini A Catani F

Aims

The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA).

Patients and Methods

Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 438 - 442
1 Oct 2019
Kayani B Haddad FS


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 108 - 116
1 Jan 2020
Burger JA Kleeblad LJ Laas N Pearle AD

Aims

Limited evidence is available on mid-term outcomes of robotic-arm assisted (RA) partial knee arthroplasty (PKA). Therefore, the purpose of this study was to evaluate mid-term survivorship, modes of failure, and patient-reported outcomes of RA PKA.

Methods

A retrospective review of patients who underwent RA PKA between June 2007 and August 2016 was performed. Patients received a fixed-bearing medial or lateral unicompartmental knee arthroplasty (UKA), patellofemoral arthroplasty (PFA), or bicompartmental knee arthroplasty (BiKA; PFA plus medial UKA). All patients completed a questionnaire regarding revision surgery, reoperations, and level of satisfaction. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed using the KOOS for Joint Replacement Junior survey.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims

The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA).

Patients and Methods

A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (sd 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 495 - 501
1 Oct 2019
Hampp EL Sodhi N Scholl L Deren ME Yenna Z Westrich G Mont MA

Objectives

The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty (RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are limited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this technique. The objective of this cadaver study was to compare the extent of soft-tissue damage sustained through a robotic-assisted, haptically guided TKA (RATKA) versus a manual TKA (MTKA) approach.

Methods

A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal–Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage between RATKA and MTKA cases.


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1479 - 1488
1 Dec 2019
Laverdière C Corban J Khoury J Ge SM Schupbach J Harvey EJ Reindl R Martineau PA

Aims

Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery, augmented reality (AR) may become an important tool for surgeons in the future. By superimposing a digital image on a user’s view of the physical world, this technology shows great promise in orthopaedics. The aim of this review is to investigate the current and potential uses of AR in orthopaedics.

Materials and Methods

A systematic review of the PubMed, MEDLINE, and Embase databases up to January 2019 using the keywords ‘orthopaedic’ OR ‘orthopedic AND augmented reality’ was performed by two independent reviewers.


Bone & Joint Research
Vol. 8, Issue 6 | Pages 228 - 231
1 Jun 2019
Kayani B Haddad FS


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1230 - 1237
1 Oct 2019
Kayani B Konan S Horriat S Ibrahim MS Haddad FS

Aims

The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA).

Patients and Methods

This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (sd 6.2) at the time of surgery. The mean preoperative hip-knee-ankle deformity was 4.1° varus (sd 3.4).


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 24 - 33
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS

Aims

The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) versus robotic-arm assisted UKA.

Patients and Methods

This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers.


Bone & Joint 360
Vol. 8, Issue 2 | Pages 12 - 15
1 Apr 2019


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1033 - 1042
1 Aug 2018
Kayani B Konan S Pietrzak JRT Huq SS Tahmassebi J Haddad FS

Aims

The primary aim of this study was to determine the surgical team’s learning curve for introducing robotic-arm assisted unicompartmental knee arthroplasty (UKA) into routine surgical practice. The secondary objective was to compare accuracy of implant positioning in conventional jig-based UKA versus robotic-arm assisted UKA.

Patients and Methods

This prospective single-surgeon cohort study included 60 consecutive conventional jig-based UKAs compared with 60 consecutive robotic-arm assisted UKAs for medial compartment knee osteoarthritis. Patients undergoing conventional UKA and robotic-arm assisted UKA were well-matched for baseline characteristics including a mean age of 65.5 years (sd 6.8) vs 64.1 years (sd 8.7), (p = 0.31); a mean body mass index of 27.2 kg.m2 (sd 2.7) vs 28.1 kg.m2 (sd 4.5), (p = 0.25); and gender (27 males: 33 females vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning curve were prospectively collected. These included operative times, the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire to assess preoperative stress levels amongst the surgical team, accuracy of implant positioning, limb alignment, and postoperative complications.


Bone & Joint 360
Vol. 4, Issue 5 | Pages 2 - 7
1 Oct 2015
Clark GW Wood DJ

The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1296 - 1299
1 Oct 2011
Lang JE Mannava S Floyd AJ Goddard MS Smith BP Mofidi A M. Seyler T Jinnah RH

Robots have been used in surgery since the late 1980s. Orthopaedic surgery began to incorporate robotic technology in 1992, with the introduction of ROBODOC, for the planning and performance of total hip replacement. The use of robotic systems has subsequently increased, with promising short-term radiological outcomes when compared with traditional orthopaedic procedures. Robotic systems can be classified into two categories: autonomous and haptic (or surgeon-guided). Passive surgery systems, which represent a third type of technology, have also been adopted recently by orthopaedic surgeons.

While autonomous systems have fallen out of favour, tactile systems with technological improvements have become widely used. Specifically, the use of tactile and passive robotic systems in unicompartmental knee replacement (UKR) has addressed some of the historical mechanisms of failure of non-robotic UKR. These systems assist with increasing the accuracy of the alignment of the components and produce more consistent ligament balance. Short-term improvements in clinical and radiological outcomes have increased the popularity of robot-assisted UKR.

Robot-assisted orthopaedic surgery has the potential for improving surgical outcomes. We discuss the different types of robotic systems available for use in orthopaedics and consider the indication, contraindications and limitations of these technologies.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 292 - 299
1 Mar 2015
Karthik K Colegate-Stone T Dasgupta P Tavakkolizadeh A Sinha J

The use of robots in orthopaedic surgery is an emerging field that is gaining momentum. It has the potential for significant improvements in surgical planning, accuracy of component implantation and patient safety. Advocates of robot-assisted systems describe better patient outcomes through improved pre-operative planning and enhanced execution of surgery. However, costs, limited availability, a lack of evidence regarding the efficiency and safety of such systems and an absence of long-term high-impact studies have restricted the widespread implementation of these systems. We have reviewed the literature on the efficacy, safety and current understanding of the use of robotics in orthopaedics.

Cite this article: Bone Joint J 2015; 97-B:292–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 16 - 22
1 Jan 2012
Popovic D King GJW

In light of the growing number of elderly osteopenic patients with distal humeral fractures, we discuss the history of their management and current trends. Under most circumstances operative fixation and early mobilisation is the treatment of choice, as it gives the best results. The relative indications for and results of total elbow replacement versus internal fixation are discussed.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 188 - 197
1 Feb 2006
Cobb J Henckel J Gomes P Harris S Jakopec M Rodriguez F Barrett A Davies B

We performed a prospective, randomised controlled trial of unicompartmental knee arthroplasty comparing the performance of the Acrobot system with conventional surgery. A total of 27 patients (28 knees) awaiting unicompartmental knee arthroplasty were randomly allocated to have the operation performed conventionally or with the assistance of the Acrobot. The primary outcome measurement was the angle of tibiofemoral alignment in the coronal plane, measured by CT. Other secondary parameters were evaluated and are reported.

All of the Acrobot group had tibiofemoral alignment in the coronal plane within 2° of the planned position, while only 40% of the conventional group achieved this level of accuracy. While the operations took longer, no adverse effects were noted, and there was a trend towards improvement in performance with increasing accuracy based on the Western Ontario and McMaster Universities Osteoarthritis Index and American Knee Society scores at six weeks and three months. The Acrobot device allows the surgeon to reproduce a pre-operative plan more reliably than is possible using conventional techniques which may have clinical advantages.


Bone & Joint 360
Vol. 1, Issue 3 | Pages 2 - 4
1 Jun 2012
Cobb JP Andrews BL

In a global environment of rising costs and limited funds, robotic and computer-assisted orthopaedic technologies could provide the means to drive a necessary revolution in arthroplasty productivity. Robots have been used to operate on humans for 20 years, but the adoption of the technology has lagged behind that of the manufacturing industry. The use of robots in surgery should enable cost savings by reducing instrumentation and inventories, and improving accuracy. Despite these benefits, the orthopaedic community has been resistant to change. If the ergonomics and economics are right, robotic technology just might transform the provision of joint replacement.