Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
All major studies have incorporated the use of prolonged courses of parenteral or oral antibiotic therapy in the management of two-stage revision of an infected total knee arthroplasty. We present a series of 59 consecutive patients, all with microbiologically-proven deep infection of a total knee arthroplasty, in whom a prolonged course of antibiotic therapy was not routinely used. The mean follow-up was 56.4 months (24 to 114). Of the 38 patients who underwent a staged exchange, infection was successfully eradicated in 34 (89%) but recurrent or persistent infection was present in four (11%). Our rate of cure for infection is similar to that reported elsewhere. We conclude that a prolonged course of antibiotic therapy seems not to alter the incidence of recurrent or persistent infection. The costs of the administration of antibiotics are high and such a regime may be unnecessary.
Between 1996 and 2003 six institutions in the United States and France contributed a consecutive series of 234 fractures of the femur in 229 children which were treated by titanium elastic nailing. Minor or major complications occurred in 80 fractures. Full information was available concerning 230 fractures, of which the outcome was excellent in 150 (65%), satisfactory in 57 (25%), and poor in 23 (10%). Poor outcomes were due to leg-length discrepancy in five fractures, unacceptable angulation in 17, and failure of fixation in one. There was a statistically significant relationship (p = 0.003) between age and outcome, and the odds ratio for poor outcome was 3.86 for children aged 11 years and older compared with those below this age. The difference between the weight of children with a poor outcome and those with an excellent or satisfactory outcome was statistically significant (54 kg
Osteofibrous dysplasia is an unusual developmental condition of childhood, which almost exclusively affects the tibia. It is thought to follow a slowly progressive course and to stabilise after skeletal maturity. The possible link with adamantinoma is controversial and some authors believe that they are part of one histological process. We retrospectively reviewed 16 patients who were diagnosed as having osteofibrous dysplasia initially or on the final histological examination. Their management was diverse, depending on the severity of symptoms and the extent of the lesion. Definitive (extraperiosteal) surgery was localised ‘shark-bite’ excision for small lesions in five patients. Extensive lesions were treated by segmental excision and fibular autograft in six patients, external fixation and bone transport in four and proximal tibial replacement in one. One patient who had a fibular autograft required further excision and bone transport for recurrence. Six initially underwent curettage and all had recurrence. There were no recurrences after localised extraperiosteal excision or bone transport. There were three confirmed cases of adamantinoma. The relevant literature is reviewed. We recommend extraperiosteal excision in all cases of osteofibrous dysplasia, with segmental excision and reconstruction in more extensive lesions.
Pathological fractures of the humerus are associated with pain, morbidity, loss of function and a diminished quality of life. We report our experience of stabilising these fractures using polymethylmethacrylate and non-locking plates. We undertook a retrospective review over 20 years of patients treated at a tertiary musculoskeletal oncology centre. Those who had undergone surgery for an impending or completed pathological humeral fracture with a diagnosis of metastatic disease or myeloma were identified from our database. There were 63 patients (43 men, 20 women) in the series with a mean age of 63 years (39 to 87). All had undergone intralesional curettage of the tumour followed by fixation with intramedullary polymethylmethacrylate and plating. Complications occurred in 14 patients (22.2%) and seven (11.1%) required re-operation. At the latest follow-up, 47 patients (74.6%) were deceased and 16 (25.4%) were living with a mean follow-up of 75 months (1 to 184). A total of 54 (86%) patients had no or mild pain and 50 (80%) required no or minimal assistance with activities of daily living. Of the 16 living patients none had pain and all could perform activities of daily living without assistance. Intralesional resection of the tumour, filling of the cavity with cement, and plate stabilisation of the pathological fracture gives immediate rigidity and allows an early return of function without the need for bony union. The patient’s local disease burden is reduced, which may alleviate tumour-related pain and slow the progression of the disease. The cemented-plate technique provides a reliable option for the treatment of pathological fractures of the humerus.
We report positive and negative factors associated with the most commonly-used methods of reconstruction after pathological fracture of the proximal femur. The study was based on 142 patients treated surgically for 146 metastatic lesions between 1996 and 2003. The local rate of failure was 10.3% (15 of 146). Of 37 operations involving osteosynthetic devices, six failed (16.2%) compared with nine (8.3%) in 109 operations involving endoprostheses. Of nine cases of prosthetic failure, four were due to periprosthetic fractures and three to recurrent dislocation. In the osteosynthesis group, three (13.6%) of 22 reconstruction nails failed. The two-year risk of re-operation after any type of osteosynthesis was 0.35 compared with 0.18 after any type of endoprosthetic reconstruction (p = 0.07). Endoprosthetic reconstructions are preferable to the use of reconstruction nails and other osteosynthetic devices for the treatment of metastatic lesions in the proximal third of the femur.
External fixation of distal tibial fractures is often associated with delayed union. We have investigated whether union can be enhanced by using recombinant bone morphogenetic protein-7 (rhBMP-7). Osteoinduction with rhBMP-7 and bovine collagen was used in 20 patients with distal tibial fractures which had been treated by external fixation (BMP group). Healing of the fracture was compared with that of 20 matched patients in whom treatment was similar except that rhBMP-7 was not used. Significantly more fractures had healed by 16 (p = 0.039) and 20 weeks (p = 0.022) in the BMP group compared with the matched group. The mean time to union (p = 0.002), the duration of absence from work (p = 0.018) and the time for which external fixation was required (p = 0.037) were significantly shorter in the BMP group than in the matched group. Secondary intervention due to delayed healing was required in two patients in the BMP group and seven in the matched group. RhBMP-7 can enhance the union of distal tibial fractures treated by external fixation.
Fractures and nonunions of the proximal humerus are increasingly treated by open reduction and internal fixation. The extended deltopectoral approach remains the most widely used for this purpose. However, it provides only limited exposure of the lateral and posterior aspects of the proximal humerus. We have previously described the alternative extended deltoid-splitting approach. In this paper we outline variations and extensions of this technique that we have developed in the management of further patients with these fractures.
The treatment of fractures of the proximal tibia is complex and makes great demands on the implants used. Our study aimed to identify what levels of primary stability could be achieved with various forms of osteosynthesis in the treatment of diaphyseal fractures of the proximal tibia. Pairs of human tibiae were investigated. An unstable fracture was simulated by creating a defect at the metaphyseal-diaphyseal junction. Six implants were tested in a uniaxial testing device (Instron) using the quasi-static and displacement-controlled modes and the force-displacement curve was recorded. The movements of each fragment and of the implant were recorded video-optically (MacReflex, Qualysis). Axial deviations were evaluated at 300 N. The results show that the nailing systems tolerated the highest forces. The lowest axial deviations in varus and valgus were also found for the nailing systems; the highest axial deviations were recorded for the buttress plate and the less invasive stabilising system (LISS). In terms of rotational displacement the LISS was better than the buttress plate. In summary, it was found that higher loads were better tolerated by centrally placed load carriers than by eccentrically placed ones. In the case of the latter, it appears advantageous to use additive procedures for medial buttressing in the early phase.
Fluoronavigation is an image-guided technology which uses intra-operative fluoroscopic images taken under a real-time tracking system and registration to guide surgical procedures. With the skeleton and the instrument registered, guidance under an optical tracking system is possible, allowing fixation of the fracture and insertion of an implant. This technology helps to minimise exposure to x-rays, providing multiplanar views for monitoring and accurate positioning of implants. It allows real-time interactive quantitative data for decision-making and expands the application of minimally invasive surgery. In orthopaedic trauma its use can be further enhanced by combining newer imaging technologies such as intra-operative three-dimensional fluoroscopy and optical image guidance, new advances in software for fracture reduction, and new tracking mechanisms using electromagnetic technology. The major obstacles for general and wider applications are the inability to track individual fracture fragments, no navigated real-time fracture reduction, and the lack of an objective assessment method for cost-effectiveness. We believe that its application will go beyond the operating theatre and cover all aspects of patient management, from pre-operative planning to intra-operative guidance and postoperative rehabilitation.
We treated 108 patients with a pertrochanteric femoral fracture using either the dynamic hip screw or the proximal femoral nail in this prospective, randomised series. We compared walking ability before fracture, intra-operative variables and return to their residence. Patients treated with the proximal femoral nail (n = 42) had regained their pre-operative walking ability significantly (p = 0.04) more often by the four-month review than those treated with the dynamic hip screw (n = 41). Peri-operative or immediate post-operative measures of outcome did not differ between the groups, with the exception of operation time. The dynamic hip screw allowed a significantly greater compression of the fracture during the four-month follow-up, but consolidation of the fracture was comparable between the two groups. Two major losses of reduction were observed in each group, resulting in a total of four revision operations. Our results suggest that the use of the proximal femoral nail may allow a faster postoperative restoration of walking ability, when compared with the dynamic hip screw.
This paper outlines the history of advances made in the treatment of open fractures that have occurred during wartime.
Endoprosthetic reconstruction following resection of 31 tumours of the proximal femur in 30 patients was performed using a Wagner SL femoral revision stem. The mean follow-up was 25.6 months (0.6 to 130.0). Of the 28 patients with a metastasis, 27 died within a mean follow-up period of 18.1 months (0.6 to 56.3) after the operation, and the remaining patient was excluded from the study 44.4 months post-operatively when the stem was removed. The two patients with primary bone tumours were still alive at the latest follow-up of 81.0 and 130.0 months, respectively. One stem only was removed for suspected low-grade infection 44.4 months post-operatively. The worst-case survival rate with removal of the stem for any cause and/or loss to follow-up was 80.0% (95% confidence interval 44.9 to 100) at 130.0 months. The mean Karnofsky index increased from 44.2% (20% to 70%) pre-operatively to 59.7% (0% to 100%) post-operatively, and the mean Merle d’Aubigné score improved from 4.5 (0 to 15) to 12.0 (0 to 18). The mean post-operative Musculoskeletal Tumour Society score was 62.4% (3.3% to 100%). The Wagner SL femoral revision stem offers an alternative to special tumour prostheses for the treatment of primary and secondary tumours of the proximal femur. The mid-term results are very promising, but long-term experience is necessary.
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate fracture healing must not be ignored.