Advertisement for orthosearch.org.uk
Results 761 - 780 of 1611
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1464 - 1471
1 Nov 2014
Lindberg-Larsen M Jørgensen CC Hansen TB Solgaard S Kehlet H

Data on early morbidity and complications after revision total hip replacement (THR) are limited. The aim of this nationwide study was to describe and quantify early morbidity after aseptic revision THR and relate the morbidity to the extent of the revision surgical procedure. We analysed all aseptic revision THRs from 1st October 2009 to 30th September 2011 using the Danish National Patient Registry, with additional information from the Danish Hip Arthroplasty Registry. There were 1553 procedures (1490 patients) performed in 40 centres and we divided them into total revisions, acetabular component revisions, femoral stem revisions and partial revisions. The mean age of the patients was 70.4 years (25 to 98) and the median hospital stay was five days (interquartile range 3 to 7). Within 90 days of surgery, the readmission rate was 18.3%, mortality rate 1.4%, re-operation rate 6.1%, dislocation rate 7.0% and infection rate 3.0%. There were no differences in these outcomes between high- and low-volume centres. Of all readmissions, 255 (63.9%) were due to ‘surgical’ complications versus 144 (36.1%) ‘medical’ complications. Importantly, we found no differences in early morbidity across the surgical subgroups, despite major differences in the extent and complexity of operations. However, dislocations and the resulting morbidity represent the major challenge for improvement in aseptic revision THR.

Cite this article: Bone Joint J 2014; 96-B:1464–71.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 317 - 320
1 Nov 2014
Basso T Klaksvik J Foss OA

Objective

In ex vivo hip fracture studies femoral pairs are split to create two comparable test groups. When more than two groups are required, or if paired femurs cannot be obtained, group allocation according to bone mineral density (BMD) is sometimes performed. In this statistical experiment we explore how this affects experimental results and sample size considerations.

Methods

In a hip fracture experiment, nine pairs of human cadaver femurs were tested in a paired study design. The femurs were then re-matched according to BMD, creating two new test groups. Intra-pair variance and paired correlations in fixation stability were calculated. A hypothetical power analysis was then performed to explore the required sample size for the two types of group allocation.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1472 - 1477
1 Nov 2014
Vioreanu MH Parry MC Haddad FS Duncan CP

The Unified Classification System (UCS) emphasises the key principles in the assessment and management of peri-prosthetic fractures complicating partial or total joint replacement.

We tested the inter- and intra-observer agreement for the UCS as applied to the pelvis and femur using 20 examples of peri-prosthetic fracture in 17 patients. Each subtype of the UCS was represented by at least one case. Specialist orthopaedic surgeons (experts) and orthopaedic residents (pre-experts) assessed reliability on two separate occasions.

For the pelvis, the UCS showed inter-observer agreement of 0.837 (95% confidence intervals (CI) 0.798 to 0.876) for the experts and 0.728 (95% CI 0.689 to 0.767) for the pre-experts. The intra-observer agreement for the experts was 0.861 (95% CI 0.760 to 0.963) and 0.803 (95% 0.688 to 0.918) for the pre-experts. For the femur, the UCS showed an inter-observer kappa value of 0.805 (95% CI 0.765 to 0.845) for the experts and a value of 0.732 (95% CI 0.690 to 0.773) for the pre-experts. The intra-observer agreement was 0.920 (95% CI 0.867 to 0.973) for the experts, and 0.772 (95% CI 0.652 to 0.892) for the pre-experts. This corresponds to a substantial and ‘almost perfect’ inter- and intra-observer agreement for the UCS for peri-prosthetic fractures of the pelvis and femur.

We hope that unifying the terminology of these injuries will assist in their assessment, treatment and outcome.

Cite this article: Bone Joint J 2014;96-B:1472–7.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 11 - 16
1 Nov 2014
Khanna V Tushinski DM Drexler M Backstein DB Gross AE Safir OA Kuzyk PR

Cartilage defects of the hip cause significant pain and may lead to arthritic changes that necessitate hip replacement. We propose the use of fresh osteochondral allografts as an option for the treatment of such defects in young patients. Here we present the results of fresh osteochondral allografts for cartilage defects in 17 patients in a prospective study. The underlying diagnoses for the cartilage defects were osteochondritis dissecans in eight and avascular necrosis in six. Two had Legg-Calve-Perthes and one a femoral head fracture. Pre-operatively, an MRI was used to determine the size of the cartilage defect and the femoral head diameter. All patients underwent surgical hip dislocation with a trochanteric slide osteotomy for placement of the allograft. The mean age at surgery was 25.9 years (17 to 44) and mean follow-up was 41.6 months (3 to 74). The mean Harris hip score was significantly better after surgery (p < 0.01) and 13 patients had fair to good outcomes. One patient required a repeat allograft, one patient underwent hip replacement and two patients are awaiting hip replacement. Fresh osteochondral allograft is a reasonable treatment option for hip cartilage defects in young patients.

Cite this article: Bone Joint J 2014;96-B(11 Supple A):11–16.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 305 - 309
1 Nov 2014
Harris KK Price AJ Beard DJ Fitzpatrick R Jenkinson C Dawson J

Objective

The objective of this study was to explore dimensionality of the Oxford Hip Score (OHS) and examine whether self-reported pain and functioning can be distinguished in the form of subscales.

Methods

This was a secondary data analysis of the UK NHS hospital episode statistics/patient-reported outcome measures dataset containing pre-operative OHS scores on 97 487 patients who were undergoing hip replacement surgery.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 70 - 72
1 Nov 2014
Callaghan JJ Liu SS Phruetthiphat O

A common situation presenting to the orthopaedic surgeon today is a worn acetabular liner with substantial acetabular and pelvic osteolysis. The surgeon has many options for dealing with osteolytic defects. These include allograft, calcium based substitutes, demineralised bone matrix, or combinations of these options with or without addition of platelet rich plasma. To date there are no clinical studies to determine the efficacy of using bone-stimulating materials in osteolytic defects at the time of revision surgery and there are surprisingly few studies demonstrating the clinical efficacy of these treatment options. Even when radiographs appear to demonstrate incorporation of graft material CT studies have shown that incorporation is incomplete. The surgeon, in choosing a graft material for a surgical procedure must take into account the efficacy, safety, cost and convenience of that material.

Cite this article: Bone Joint J 2014;96-B (11 Suppl A):70–2.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1478 - 1484
1 Nov 2014
Garcia-Rey E Cruz-Pardos A Madero R

A total of 31 patients, (20 women, 11 men; mean age 62.5 years old; 23 to 81), who underwent conversion of a Girdlestone resection-arthroplasty (RA) to a total hip replacement (THR) were compared with 93 patients, (60 women, 33 men; mean age 63.4 years old; 20 to 89), who had revision THR surgery for aseptic loosening in a retrospective matched case-control study. Age, gender and the extent of the pre-operative bone defect were similar in all patients. Mean follow-up was 9.3 years (5 to 18).

Pre-operative function and range of movement were better in the control group (p = 0.01 and 0.003, respectively) and pre-operative leg length discrepancy (LLD) was greater in the RA group (p < 0.001). The post-operative clinical outcome was similar in both groups except for mean post-operative LLD, which was greater in the study group (p = 0.003). There was a significant interaction effect for LLD in the study group (p < 0.001). A two-way analysis of variance showed that clinical outcome depended on patient age (patients older than 70 years old had worse pre-operative pain, p = 0.017) or bone defect (patients with a large acetabular bone defect had higher LLD, p = 0.006, worse post-operative function p = 0.009 and range of movement, p = 0.005), irrespective of the group.

Despite major acetabular and femoral bone defects requiring complex surgical reconstruction techniques, THR after RA shows a clinical outcome similar to those obtained in aseptic revision surgery for hips with similar sized bone defects.

Cite this article: Bone Joint J 2014;96-B:1478–84.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 73 - 77
1 Nov 2014
Brown NM Hellman M Haughom BH Shah RP Sporer SM Paprosky WG

A pelvic discontinuity occurs when the superior and inferior parts of the hemi-pelvis are no longer connected, which is difficult to manage when associated with a failed total hip replacement. Chronic pelvic discontinuity is found in 0.9% to 2.1% of hip revision cases with risk factors including severe pelvic bone loss, female gender, prior pelvic radiation and rheumatoid arthritis. Common treatment options include: pelvic plating with allograft, cage reconstruction, custom triflange implants, and porous tantalum implants with modular augments. The optimal technique is dependent upon the degree of the discontinuity, the amount of available bone stock and the likelihood of achieving stable healing between the two segments. A method of treating pelvic discontinuity using porous tantalum components with a distraction technique that achieves both initial stability and subsequent long-term biological fixation is described.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):73–7.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 32 - 35
1 Nov 2014
Mirza AJ Lombardi Jr AV Morris MJ Berend KR

Direct anterior approaches to the hip have gained popularity as a minimally invasive method when performing primary total hip replacement (THR). A retrospective review of a single institution joint registry was performed in order to compare patient outcomes after THR using the Anterior Supine Intermuscular (ASI) approach versus a more conventional direct lateral approach. An electronic database identified 1511 patients treated with 1690 primary THRs between January 2006 and December 2010. Our results represent a summary of findings from our previously published work. We found that patients that underwent an ASI approach had faster functional recovery and higher Harris hip scores in the early post-operative period when compared with patients who had a direct lateral approach The overall complication rate in our ASI group was relatively low (1.7%) compared with other series using the same approach. The most frequent complication was early periprosthetic femoral fractures (0.9%). The dislocation rate in our series was 0.4% and the prosthetic joint infection rate was 0.1%. We suggest that the ASI approach is acceptable and safe when performing THR and encourages early functional recovery of our patients.

Cite this article: Bone Joint J 2014;96- B(11 Suppl A):32–5.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 60 - 65
1 Nov 2014
Parry MC Duncan CP

Advances in the treatment of periprosthetic joint infections of the hip have once more pushed prosthesis preserving techniques into the limelight. At the same time, the common infecting organisms are evolving to become more resistant to conventional antimicrobial agents. Whilst the epidemiology of resistant staphylococci is changing, a number of recent reports have advocated the use of irrigation and debridement and one-stage revision for the treatment of periprosthetic joint infections due to resistant organisms. This review presents the available evidence for the treatment of periprosthetic joint infections of the hip, concentrating in particular on methicillin resistant staphylococci.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):60–5.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1449 - 1454
1 Nov 2014
Imbuldeniya AM Walter WL Zicat BA Walter WK

We describe the clinical and radiological results of cementless primary total hip replacement (THR) in 25 patients (18 women and seven men; 30 THRs) with severe developmental dysplasia of the hip (DDH). Their mean age at surgery was 47 years (23 to 89). In all, 21 hips had Crowe type III dysplasia and nine had Crowe type IV. Cementless acetabular components with standard polyethylene liners were introduced as close to the level of the true acetabulum as possible. The modular cementless S-ROM femoral component was used with a low resection of the femoral neck.

A total of 21 patients (25 THRs) were available for review at a mean follow-up of 18.7 years (15.8 to 21.8). The mean modified Harris hip score improved from 46 points pre-operatively to 90 at final follow up (p < 0.001).

A total of 15 patients (17 THRs; 57%) underwent revision of the acetabular component at a mean of 14.6 years (7 to 20.8), all for osteolysis. Two patients (two THRs) had symptomatic loosening. No patient underwent femoral revision. Survival with revision of either component for any indication was 81% at 15 years (95% CI 60.1 to 92.3), with 21 patients at risk.

This technique may reduce the need for femoral osteotomy in severe DDH, while providing a good long-term functional result.

Cite this article: Bone Joint J 2014;96-B:1449–54.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 17 - 21
1 Nov 2014
Dunbar MJ Prasad V Weerts B Richardson G

Metal-on-metal resurfacing of the hip (MoMHR) has enjoyed a resurgence in the last decade, but is now again in question as a routine option for osteoarthritis of the hip. Proponents of hip resurfacing suggest that its survival is superior to that of conventional hip replacement (THR), and that hip resurfacing is less invasive, is easier to revise than THR, and provides superior functional outcomes. Our argument serves to illustrate that none of these proposed advantages have been realised and new and unanticipated serious complications, such as pseudotumors, have been associated with the procedure. As such, we feel that the routine use of MoMHR is not justified.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):17–21.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 36 - 42
1 Nov 2014
Sheth NP Melnic CM Paprosky WG

Acetabular bone loss is a challenging problem facing the revision total hip replacement surgeon. Reconstruction of the acetabulum depends on the presence of anterosuperior and posteroinferior pelvic column support for component fixation and stability. The Paprosky classification is most commonly used when determining the location and degree of acetabular bone loss. Augments serve the function of either providing primary construct stability or supplementary fixation.

When a pelvic discontinuity is encountered we advocate the use of an acetabular distraction technique with a jumbo cup and modular porous metal acetabular augments for the treatment of severe acetabular bone loss and associated chronic pelvic discontinuity.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):36–42.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 321 - 327
1 Nov 2014
Palmer AJR Ayyar-Gupta V Dutton SJ Rombach I Cooper CD Pollard TC Hollinghurst D Taylor A Barker KL McNally EG Beard DJ Andrade AJ Carr AJ Glyn-Jones S

Aims

Femoroacetabular Junction Impingement (FAI) describes abnormalities in the shape of the femoral head–neck junction, or abnormalities in the orientation of the acetabulum. In the short term, FAI can give rise to pain and disability, and in the long-term it significantly increases the risk of developing osteoarthritis. The Femoroacetabular Impingement Trial (FAIT) aims to determine whether operative or non-operative intervention is more effective at improving symptoms and preventing the development and progression of osteoarthritis.

Methods

FAIT is a multicentre superiority parallel two-arm randomised controlled trial comparing physiotherapy and activity modification with arthroscopic surgery for the treatment of symptomatic FAI. Patients aged 18 to 60 with clinical and radiological evidence of FAI are eligible. Principal exclusion criteria include previous surgery to the index hip, established osteoarthritis (Kellgren–Lawrence ≥ 2), hip dysplasia (centre-edge angle < 20°), and completion of a physiotherapy programme targeting FAI within the previous 12 months. Recruitment will take place over 24 months and 120 patients will be randomised in a 1:1 ratio and followed up for three years. The two primary outcome measures are change in hip outcome score eight months post-randomisation (approximately six-months post-intervention initiation) and change in radiographic minimum joint space width 38 months post-randomisation. ClinicalTrials.gov: NCT01893034.

Cite this article: Bone Joint Res 2014;3:321–7.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1455 - 1458
1 Nov 2014
Amanatullah DF Rachala SR Trousdale RT Sierra RJ

Dysplasia of the hip, hypotonia, osteopenia, ligamentous laxity, and mental retardation increase the complexity of performing and managing patients with Down syndrome who require total hip replacement (THR). We identified 14 patients (six males, eight females, 21 hips) with Down syndrome and degenerative disease of the hip who underwent THR, with a minimum follow-up of two years from 1969 to 2009. In seven patients, bilateral THRs were performed while the rest had unilateral THRs. The mean clinical follow-up was 5.8 years (standard deviation (sd) 4.7; 2 to 17). The mean Harris hip score was 37.9 points (sd 7.8) pre-operatively and increased to 89.2 (sd 12.3) at final follow-up (p = 1x10-9). No patient suffered a post-operative dislocation. In three patients, four hips had revision THR for aseptic loosening at a mean follow-up of 7.7 years (sd 6.3; 3 to 17). This rate of revision THR was higher than expected. Our patients with Down syndrome benefitted clinically from THR at mid-term follow-up.

Cite this article: Bone Joint J 2014;96-B:1455–8.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1298 - 1306
1 Oct 2014
Daniel J Pradhan C Ziaee H Pynsent PB McMinn DJW

We report a 12- to 15-year implant survival assessment of a prospective single-surgeon series of Birmingham Hip Resurfacings (BHRs). The earliest 1000 consecutive BHRs including 288 women (335 hips) and 598 men (665 hips) of all ages and diagnoses with no exclusions were prospectively followed-up with postal questionnaires, of whom the first 402 BHRs (350 patients) also had clinical and radiological review.

Mean follow-up was 13.7 years (12.3 to 15.3). In total, 59 patients (68 hips) died 0.7 to 12.6 years following surgery from unrelated causes. There were 38 revisions, 0.1 to 13.9 years (median 8.7) following operation, including 17 femoral failures (1.7%) and seven each of infections, soft-tissue reactions and other causes. With revision for any reason as the end-point Kaplan–Meier survival analysis showed 97.4% (95% confidence interval (CI) 96.9 to 97.9) and 95.8% (95% CI 95.1 to 96.5) survival at ten and 15 years, respectively. Radiological assessment showed 11 (3.5%) femoral and 13 (4.1%) acetabular radiolucencies which were not deemed failures and one radiological femoral failure (0.3%).

Our study shows that the performance of the BHR continues to be good at 12- to 15-year follow-up. Men have better implant survival (98.0%; 95% CI 97.4 to 98.6) at 15 years than women (91.5%; 95% CI 89.8 to 93.2), and women < 60 years (90.5%; 95% CI 88.3 to 92.7) fare worse than others. Hip dysplasia and osteonecrosis are risk factors for failure. Patients under 50 years with osteoarthritis fare best (99.4%; 95% CI 98.8 to 100 survival at 15 years), with no failures in men in this group.

Cite this article: Bone Joint J 2014;96-B:1298–1306.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1307 - 1311
1 Oct 2014
Benninger E Zingg PO Kamath AF Dora C

To assess the sustainability of our institutional bone bank, we calculated the final product cost of fresh-frozen femoral head allografts and compared these costs with the use of commercial alternatives. Between 2007 and 2010 all quantifiable costs associated with allograft donor screening, harvesting, storage, and administration of femoral head allografts retrieved from patients undergoing elective hip replacement were analysed.

From 290 femoral head allografts harvested and stored as full (complete) head specimens or as two halves, 101 had to be withdrawn. In total, 104 full and 75 half heads were implanted in 152 recipients. The calculated final product costs were €1367 per full head. Compared with the use of commercially available processed allografts, a saving of at least €43 119 was realised over four-years (€10 780 per year) resulting in a cost-effective intervention at our institution. Assuming a price of between €1672 and €2149 per commercially purchased allograft, breakeven analysis revealed that implanting between 34 and 63 allografts per year equated to the total cost of bone banking.

Cite this article: Bone Joint J 2014;96-B:1307–11


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1312 - 1318
1 Oct 2014
Ibrahim MS Raja S Khan MA Haddad FS

We report the five year outcomes of a two-stage approach for infected total hip replacement. This is a single-surgeon experience at a tertiary centre where the more straightforward cases are treated using single-stage exchange. This study highlights the vital role of the multidisciplinary team in managing these cases.

A total of 125 patients (51 male, 74 female) with a mean age of 68 years (42 to 78) were reviewed prospectively. Functional status was assessed using the Harris hip score (HHS). The mean HHS improved from 38 (6 to 78.5) pre-operatively to 81.2 (33 to 98) post-operatively. Staphylococcus species were isolated in 85 patients (68%).

The rate of control of infection was 96% at five years. In all, 19 patients died during the period of the study. This represented a one year mortality of 0.8% and an overall mortality of 15.2% at five years. No patients were lost to follow-up.

We report excellent control of infection in a series of complex patients and infections using a two-stage revision protocol supported by a multidisciplinary approach. The reason for the high rate of mortality in these patients is not known.

Cite this article: Bone Joint J 2014;96-B:1312–18


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1290 - 1297
1 Oct 2014
Grammatopoulos G Pandit HG da Assunção R McLardy-Smith P De Smet KA Gill HS Murray DW

There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (sd 6°)/ 19° (sd 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (sd 5°)/ -8° (sd 8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (sd 2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (sd 7°).

This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 sd about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph.

Cite this article: Bone Joint J 2014;96-B:1290–7


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1167 - 1171
1 Sep 2014
Khan O Witt J

The cam-type deformity in femoroacetabular impingement is a 3D deformity. Single measurements using radiographs, CT or MRI may not provide a true estimate of the magnitude of the deformity. We performed an analysis of the size and location of measurements of the alpha angle (α°) using a CT technique which could be applied to the 3D reconstructions of the hip. Analysis was undertaken in 42 patients (57 hips; 24 men and 18 women; mean age 38 years (16 to 58)) who had symptoms of femoroacetabular impingement related to a cam-type abnormality. An α° of > 50° was considered a significant indicator of cam-type impingement. Measurements of the α° were made at different points around the femoral head/neck junction at intervals of 30°: starting at the nine o’clock (posterior), ten, eleven and twelve o’clock (superior), one, two and ending at three o’clock (anterior) position.

The mean maximum increased α° was 64.6° (50.8° to 86°). The two o’clock position was the most common point to find an increased α° (53 hips; 93%), followed by one o’clock (48 hips; 84%). The largest α° for each hip was found most frequently at the two o’clock position (46%), followed by the one o’clock position (39%). Generally, raised α angles extend over three segments of the clock face.

Single measurements of the α°, whether pre- or post-operative, should be viewed with caution as they may not be representative of the true size of the deformity and not define whether adequate correction has been achieved following surgery.

Cite this article: Bone Joint J 2014;96-B:1167–71.