Total knee replacement (TKR) smart tibial trials
have load-bearing sensors which will show quantitative compartment
pressure values and femoral-tibial tracking patterns. Without smart
trials, surgeons rely on feel and visual estimation of imbalance
to determine if the knee is optimally balanced. Corrective soft-tissue
releases are performed with minimal feedback as to what and how
much should be released. The smart tibial trials demonstrate graphically
where and how much imbalance is present, so that incremental releases
can be performed. The smart tibial trials now also incorporate accelerometers
which demonstrate the axial
We compared the
Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted navigation system and the other conventionally without navigation. The two methods were compared for accuracy of orientation and
Tibiofemoral
Aims. The purpose of this study was to compare the clinical and radiographic
outcomes of total ankle arthroplasty (TAA) in patients with pre-operatively
moderate and severe arthritic varus ankles to those achieved for
patients with neutral ankles. Patients and Methods. A total of 105 patients (105 ankles), matched for age, gender,
body mass index, and follow-up duration, were divided into three
groups by pre-operative coronal plane tibiotalar angle; neutral
(<
5°), moderate (5° to 15°) and severe (>
15°) varus deformity.
American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot
score, a visual analogue scale (VAS), and Short Form (SF)-36 score
were used to compare the clinical outcomes after a mean follow-up period
of 51 months (24 to 147). Results. The post-operative AOFAS, VAS scores, range of movement and complication
rates did not significantly differ among three groups. However,
there was less improvement in the SF-36 score of the severe varus
group (p = 0.008). The mean post-operative tibiotalar alignment
was 2.6° (0.1° to 8.9°), 3.1° (0.1° to 6.5°) and 4.6° (1.0° to 10.6°)
in the neutral, moderate and severe groups respectively. Although
the severe varus group showed less corrected
We prospectively assessed the benefits of using either a range-of-movement technique or an anatomical landmark method to determine the rotational
Maquet's line passes from the centre of the femoral head to the centre of the body of the talus. The distance of this line from the centre of the knee on a long-leg radiograph provides the most accurate measure of coronal
Aims. We investigated changes in the axial
The purpose of this study was to measure the
radiological parameters of femoral component
Long radiographs are used to measure lower limb axial
Correct positioning and
We reviewed two similar groups of patients with medial osteoarthritis of the knee treated by unicompartmental arthroplasty. The group receiving an Oxford meniscal-bearing implant, with no medial release, showed significantly better mechanical
We performed a CT-based computer simulation study
to determine how the relationship between any inbuilt posterior
slope in the proximal tibial osteotomy and cutting jig rotational
orientation errors affect tibial component
We reviewed radiographs and CT scans of 38 total hip arthroplasties which had dislocated (36 posteriorly; 2 anteriorly) and compared the
Internal lengthening devices in the femur lengthen
along the anatomical axis, potentially creating lateral shift of
the mechanical axis. We aimed to determine whether femoral lengthening
along the anatomical axis has an inadvertent effect on lower limb
alignment. Isolated femoral lengthening using the Intramedullary
Skeletal Kinetic Distractor was performed in 27 femora in 24 patients
(mean age 32 years (16 to 57)). Patients who underwent simultaneous realignment
procedures or concurrent tibial lengthening, or who developed mal-
or nonunion, were excluded. Pre-operative and six-month post-operative
radiographs were used to measure lower limb
The aim of this prospective single-centre study
was to assess the difference in clinical outcome between total knee replacement
(TKR) using computerised navigation and that of conventional TKR.
We hypothesised that navigation would give a better result at every
stage within the first five years. A total of 195 patients (195
knees) with a mean age of 70.0 years (39 to 89) were allocated alternately
into two treatment groups, which used either conventional instrumentation
(group A, 97 knees) or a navigation system (group B, 98 knees).
After five years, complete clinical scores were available for 121
patients (62%). A total of 18 patients were lost to follow-up. Compared
with conventional surgery, navigated TKR resulted in a better mean
Knee Society score (p = 0.008). The difference in mean Knee Society
scores over time between the two groups was not constant (p = 0.006),
which suggests that these groups differed in their response to surgery
with time. No significant difference in the frequency of malalignment
was seen between the two groups. In summary, computerised navigation resulted in a better functional
outcome at five years than conventional techniques. Given the similarity
in mechanical