Advertisement for orthosearch.org.uk
Results 61 - 80 of 411
Results per page:
Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Methods. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically. Results. The total number of PBMNCs was decreased after QQ-culture, however, the number of CD34+ and CD206+ cells were found to have increased as assessed by flow cytometry analysis. In addition, gene expression of angiogenic factors was upregulated in QQMNCs. In the animal model, the rate of bone union was higher in the QQMNC group than in the other groups. Radiographic scores and bone volume were significantly associated with the enhancement of angiogenesis in the QQMNC group. Conclusion. We have demonstrated that QQMNCs have superior potential to accelerate fracture healing compared with PBMNCs. The QQMNCs could be a promising option for fracture nonunion. Cite this article: K. Mifuji, M. Ishikawa, N. Kamei, R. Tanaka, K. Arita, H. Mizuno, T. Asahara, N. Adachi, M. Ochi. Angiogenic conditioning of peripheral blood mononuclear cells promotes fracture healing. Bone Joint Res 2017;6: 489–498. DOI: 10.1302/2046-3758.68.BJR-2016-0338.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks. The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022). The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses. Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure. In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future. Cite this article: Bone Joint J 2014;96-B:291–8


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 1 | Pages 92 - 93
1 Jan 1989
Nixon J

Sublaminar wiring provides strong and effective fixation of the scoliotic or unstable spine, but its long-term effects on the spinal canal remain unknown. An animal model was developed to observe these effects on the growth and development of the immature spine over a two-year period. Laminar overgrowth occurred both longitudinally to produce a kyphoscoliosis and in the transverse plane to cause significant laminar thickening and growth into the spinal canal. However, the cross-sectional area of the spinal canal was not significantly compromised


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 3 | Pages 480 - 484
1 May 1994
Radford W Amis A Heatley F

In an animal model we determined the strength of anterior cruciate ligaments (ACL) after section and repair by four different methods and compared it with that of the intact ligament. The standard suturing technique of multiple loops through the ligament stumps was used. Stronger suture material did not give a stronger repair. Wrapping a fine polyester mesh around the ligament or placing it between the bundles before suture increased the strength of the repair. This modification, allied to protective rehabilitation, may reduce the failure rate of acute ACL repairs


Bone & Joint Research
Vol. 12, Issue 3 | Pages 212 - 218
9 Mar 2023
Buchalter DB Kirby DJ Anil U Konda SR Leucht P

Aims

Glucose-insulin-potassium (GIK) is protective following cardiac myocyte ischaemia-reperfusion (IR) injury, however the role of GIK in protecting skeletal muscle from IR injury has not been evaluated. Given the similar mechanisms by which cardiac and skeletal muscle sustain an IR injury, we hypothesized that GIK would similarly protect skeletal muscle viability.

Methods

A total of 20 C57BL/6 male mice (10 control, 10 GIK) sustained a hindlimb IR injury using a 2.5-hour rubber band tourniquet. Immediately prior to tourniquet placement, a subcutaneous osmotic pump was placed which infused control mice with saline (0.9% sodium chloride) and treated mice with GIK (40% glucose, 50 U/l insulin, 80 mEq/L KCl, pH 4.5) at a rate of 16 µl/hr for 26.5 hours. At 24 hours following tourniquet removal, bilateral (tourniqueted and non-tourniqueted) gastrocnemius muscles were triphenyltetrazolium chloride (TTC)-stained to quantify percentage muscle viability. Bilateral peroneal muscles were used for gene expression analysis, serum creatinine and creatine kinase activity were measured, and a validated murine ethogram was used to quantify pain before euthanasia.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 120 - 125
1 Jan 2004
Nilsson M Wang J Wielanek L Tanner KE Lidgren L

An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 258 - 264
1 Feb 2007
Nagura I Fujioka H Kokubu T Makino T Sumi Y Kurosaka M

We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p < 0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 2 | Pages 270 - 275
1 May 1978
Wahlig H Dingeldein E Bergmann R Reuss K

Gentamicin incorporated in beads of polymethylmethacrylate has been shown capable of being released over a period of several months in concentrations sufficiently high to control most pathogens. The therapeutic efficacy of such beads has been demonstrated in a model of osteomyelitis of the femur in the dog. Good tolerance has been shown, both in the animal model and in tissue cultures. In forty-one patients with infection of either bone or soft tissue, mainly of the lower limb, the findings were similar. The concentrations in serum and urine were low, which excludes side-effects. The insertion of gentamicin-PMMA beads may prove to be a valuable new form of local antibiotic therapy


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 1 | Pages 126 - 129
1 Jan 1992
Wall E Massie J Kwan M Rydevik B Myers R Garfin

We developed an animal model of stretch injury to nerve in order to study in vivo conduction changes as a function of nerve strain. In 24 rabbits, the tibial nerve was exposed and stretched by 0%, 6% or 12% of its length. The strain was maintained for one hour. Nerve conduction was monitored during the period of stretch and for a one-hour recovery period. At 6% strain, the amplitude of the action potential had decreased by 70% at one hour and returned to normal during the recovery period. At 12% strain, conduction was completely blocked by one hour, and showed minimal recovery. These findings have clinical implications in nerve repair, limb trauma, and limb lengthening


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1245 - 1251
1 Sep 2006
Pendegrass CJ Oddy MJ Sundar S Cannon SR Goodship AE Blunn GW

We examined the mechanical properties of Vicryl (polyglactin 910) mesh in vitro and assessed its use in vivo as a novel biomaterial to attach tendon to a hydroxyapatite-coated metal implant, the interface of which was augmented with autogenous bone and marrow graft. This was compared with tendon re-attachment using a compressive clamp device in an identical animal model. Two- and four-ply sleeves of Vicryl mesh tested to failure under tension reached 5.13% and 28.35% of the normal ovine patellar tendon, respectively. Four-ply sleeves supported gait in an ovine model with 67.05% weight-bearing through the operated limb at 12 weeks, without evidence of mechanical failure. Mesh fibres were visible at six weeks but had been completely resorbed by 12 weeks, with no evidence of chronic inflammation. The tendon-implant neoenthesis was predominantly an indirect type, with tendon attached to the bone-hydroxyapatite surface by perforating collagen fibres


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 758 - 760
1 Jul 2002
Thornes B Murray P Bouchier-Hayes D

We have compared the rates of infection and resistance in an animal model of an orthopaedic procedure which was contaminated with a low-dose inoculum of Staphylococcus epidermidis. We randomised 44 Sprague-Dawley rats to have bone cement implanted subcutaneously containing either gentamicin or saline (control). The wound was inoculated with a dilute solution of gentamicin-sensitive Staphylococcus epidermidis. At two weeks the cement was retrieved and microbiologically tested. A lower overall rate of infection was seen in the gentamicin-loaded cement group, but there was a significantly higher rate of gentamicin-resistant infection in this group (Fisher’s exact test, p < 0.01). Antibiotic-impregnated cement has an optimum surface for colonisation and prolonged exposure to antibiotic allows mutational resistance to occur. Gentamicin-loaded cement may not be appropriate for revision surgery if it has been used already in previous surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 2 | Pages 312 - 316
1 Mar 1987
Thomas N Turner I Jones C

Four types of prosthetic replacement for the anterior cruciate ligament (carbon fibre, carbon fibre and Dacron composite, Dacron alone and bovine xenograft) were assessed at three, six and 12 months after implantation in the knees of New Zealand white rabbits. The synovium and both intra-articular and intra-osseous portions of the ligaments were examined macroscopically, by light microscopy and by scanning electron microscopy. All the knees showed mild synovitis, and there was no significant growth into the intra-articular part of any ligament. Carbon fibre and xenograft did not appear to be suitable materials in this animal model. The composite ligament showed short-term ingrowth of fibrous tissue only into the periphery of the sheath in its intra-osseous portion, whereas the Dacron ligament showed progressive fibrous tissue ingrowth with some bony incorporation of its outer fibres


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 126 - 130
1 Jan 2000
Kurth AHA Kim S Sedlmeyer I Hovy L Bauss F

Cancer-induced bone diseases are often associated with increased bone resorption and pathological fractures. In recent years, osteoprotective agents such as bisphosphonates have been studied extensively and have been shown to inhibit cancer-related bone resorption in experimental and clinical studies. The third-generation bisphosphonate, ibandronate (BM 21.0955), is a potent compound for controlling tumour osteolysis and hypercalcaemia in rats bearing Walker 256 carcinosarcoma. We have studied the effect of ibandronate given as an interventional treatment on bone strength and bone loss after the onset of tumour growth in bone. Our results suggest that it is capable of preserving bone quality in rats bearing Walker 256 carcinosarcoma cells. Since other bisphosphonates have produced comparable results in man after their success in the Walker 256 animal models our findings suggest that ibandronate may be a powerful treatment for maintaining skeletal integrity in patients with metastatic bone disease


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 5 | Pages 673 - 677
1 Sep 1992
Ashcroft G Evans N Roeda D Dodd M Mallard Porter R Smith F

The quantification of local bone blood flow in man has not previously been possible, despite its importance in the study of normal and pathological bone. We report the use of positron emission tomography, using 15O-labelled water, to measure bone blood flow in patients with closed unilateral fractures of the tibia. We compared fractured and unfractured limbs; alterations in blood flow paralleled those found in animal models. There was increased tibial blood flow at the fracture site as early as 24 hours after fracture, reaching up to 14 times that in the normal limb at two weeks. Blood flow increase was less in displaced than in undisplaced fractures. The muscle to bone ratios of blood flow were similar to those in previous animal work using other techniques. Positron emission tomography will allow study of human bone blood flow in vivo in a wide variety of pathological conditions


The Journal of Bone & Joint Surgery British Volume
Vol. 67-B, Issue 2 | Pages 229 - 231
1 Mar 1985
Southwood R Rice J McDonald P Hakendorf P Rozenbilds M

The relationship between the route of inoculation, the dose of inoculum and the development of infection after prosthetic replacement has been determined in an animal model. The rabbit hip served as the model and a Staphylococcus aureus isolated from an infected human hip arthroplasty was introduced using different protocols. The 50% infective dose (ID50) was determined for comparative purposes. Contamination of the wound site with only a few bacteria was likely to result in infection. It was considerably more difficult to induce infection when the operation was performed without inserting the prosthesis, which suggests that the implant inhibits the body's mechanism for dealing with the insult. It was difficult to produce infection by inoculating the organisms into the bloodstream: if this inoculation was delayed till three weeks after operation the animals were often grossly septicaemic by the time the arthroplasty was infected. The results emphasise the importance of minimising intra-operative contamination and the efficacy of antibiotic cover


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 4 | Pages 452 - 457
1 Nov 1977
Elson R Jephcott A McGechie D Verettas D

In thirty-one rat tibiae, plugs of plain acrylic cement were inoculated with Staphylococcus aureus; these all remained contaminated at the end of two weeks when the animals were killed. Inoculation with known strains of Pseudomonas, Proteus and Gp. G Streptococcus resulted in 70 to 93 per cent persisting contamination. Gentamicin, to which the organisms were fully sensitive, was efficacious in controlling the infection (90 per cent plugs proving sterile after two weeks). Fucidin was less successful against Staphylococcus aureus although effective in vitro. Intravenous inoculation with a suspension of Staphylococcus aureus succeeded in contaminanting 70 per cent of sixty plain cement plugs when injected into the tail vein half an hour after closure of the leg wounds. Only 11 per cent of sixty-four plugs were so contaminanted when the injection was delayed for two weeks. This animal model is submitted as a possible future means of testing different antibiotic-cement combinations against infection


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 347 - 355
15 Mar 2023
Birch NC Cheung JPY Takenaka S El Masri WS

Initial treatment of traumatic spinal cord injury remains as controversial in 2023 as it was in the early 19th century, when Sir Astley Cooper and Sir Charles Bell debated the merits or otherwise of surgery to relieve cord compression. There has been a lack of high-class evidence for early surgery, despite which expeditious intervention has become the surgical norm. This evidence deficit has been progressively addressed in the last decade and more modern statistical methods have been used to clarify some of the issues, which is demonstrated by the results of the SCI-POEM trial. However, there has never been a properly conducted trial of surgery versus active conservative care. As a result, it is still not known whether early surgery or active physiological management of the unstable injured spinal cord offers the better chance for recovery. Surgeons who care for patients with traumatic spinal cord injuries in the acute setting should be aware of the arguments on all sides of the debate, a summary of which this annotation presents.

Cite this article: Bone Joint J 2023;105-B(4):347–355.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims

To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections.

Methods

EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection.