Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
We have tested the reliability of a recently reported classification system of hip morphology in adolescents with cerebral palsy in whom the triradiate cartilage was closed. The classification is a six-grade ordinal scale, based on the measurement of the migration percentage and an assessment of Shenton’s arch, deformity of the femoral head, acetabular deformity and pelvic obliquity. Four paediatric orthopaedic surgeons and four physiotherapists received training in the use of the classification which they applied to the assessment of 42 hip radiographs, read on two separate occasions. The inter- and intra-observer reliability was assessed using the intraclass correlation coefficient and found to be excellent, with it ranging from 0.88 to 0.94. The classification in our study was shown to be valid (based on migration percentage), and reliable. As a result we believe that it can now be used in studies describing the natural history of
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
Dislocation is a major concern following total hip arthroplasty (THA) for osteoarthritis (OA). Both dual-mobility components and standard acetabular components with large femoral heads are used to reduce the risk of dislocation. We investigated whether dual-mobility components are superior to standard components in reducing the two-year dislocation and revision risk in a propensity-matched sample from the Danish Hip Arthroplasty Register (DHR). This population-based cohort study analyzed data from the DHR and the Danish National Patient Register. We included all patients undergoing primary THA for OA from January 2010 to December 2019 with either dual-mobility or standard acetabular components with metal-on-polyethylene or ceramic-on-polyethylene articulations with a 36 mm femoral head. The samples were propensity score-matched on patient and implant characteristics. The primary outcome was the difference in the absolute risk of dislocation within two years, with a secondary outcome of the difference in the absolute risk of revision surgery of any cause within the same timeframe. The cumulative incidence of dislocation was calculated using the Aalen-Johansen estimator, while the difference in absolute risk was estimated using absolute risk regression (ARR).Aims
Methods
Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.Aims
Methods
It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion.Aims
Methods
Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).Aims
Methods
Cartilage defects of the hip cause significant
pain and may lead to arthritic changes that necessitate hip replacement.
We propose the use of fresh osteochondral allografts as an option
for the treatment of such defects in young patients. Here we present
the results of fresh osteochondral allografts for cartilage defects
in 17 patients in a prospective study. The underlying diagnoses
for the cartilage defects were osteochondritis dissecans in eight
and avascular necrosis in six. Two had Legg-Calve-Perthes and one
a femoral head fracture. Pre-operatively, an MRI was used to determine
the size of the cartilage defect and the femoral head diameter.
All patients underwent surgical
The October 2024 Research Roundup360 looks at: Fracture risk among stroke survivors according to post-stroke disability status and stroke type; Noise-induced hearing loss: should surgeons be wearing ear protection during primary total joint replacement?; Intravenous dexamethasone in hip arthroscopy can enhance recovery; Patient-reported outcomes following periprosthetic joint infection of the hip and knee: a longitudinal, prospective observational study; When should surgery take place after weight loss?; Which type of surgery is the hardest physically and mentally?
The use of a porous metal shell supported by two augments with the ‘footing’ technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique. We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the ‘footing’ technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0).Aims
Methods
To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora.Aims
Methods
To analyze whether the addition of risk-based criteria to clinical examination-based selective ultrasound screening would increase the rates of early detected cases of developmental dysplasia of the hip (DDH) and decrease the rate of late detected cases. A systematic review with meta-analysis was performed. The initial search was performed in the PubMed, Scopus, and Web of Science databases in November 2021. The following search terms were used: (hip) AND (ultrasound) AND (luxation or dysplasia) AND (newborn or neonate or congenital).Aims
Methods
Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.Aims
Methods
Accurate diagnosis of chronic periprosthetic joint infection (PJI) presents a significant challenge for hip surgeons. Preoperative diagnosis is not always easy to establish, making the intraoperative decision-making process crucial in deciding between one- and two-stage revision total hip arthroplasty (THA). Calprotectin is a promising point-of-care novel biomarker that has displayed high accuracy in detecting PJI. We aimed to evaluate the utility of intraoperative calprotectin lateral flow immunoassay (LFI) in THA patients with suspected chronic PJI. The study included 48 THAs in 48 patients with a clinical suspicion of PJI, but who did not meet European Bone and Joint Infection Society (EBJIS) PJI criteria preoperatively, out of 105 patients undergoing revision THA at our institution for possible PJI between November 2020 and December 2022. Intraoperatively, synovial fluid calprotectin was measured with LFI. Cases with calprotectin levels ≥ 50 mg/l were considered infected and treated with two-stage revision THA; in negative cases, one-stage revision was performed. At least five tissue cultures were obtained; the implants removed were sent for sonication.Aims
Methods
Social media is a popular resource for patients seeking medical information and sharing experiences. periacetabular osteotomy (PAO) is the gold-standard treatment for symptomatic acetabular dysplasia with good long-term outcomes. However, little is known regarding the perceived outcomes of PAO on social media. The aims of this study were to describe the perceived outcomes following PAO using three social media platforms: Facebook, Instagram, and X (formerly known as Twitter). Facebook, Instagram, and X posts were retrospectively collected from 1 February 2023. Facebook posts were collected from the two most populated interest groups: “periacetabular osteotomy” and “PAO Australia.” Instagram and X posts were queried using the most popular hashtags: #PAOwarrior, #periacetabularosteotomy, #periacetabularosteotomyrecovery, #PAOsurgery, and #PAOrecovery. Posts were assessed for demographic data (sex, race, location), perspective (patient, physician, professional organization, industry), timing (preoperative vs postoperative), and perceived outcome (positive, negative, neutral).Aims
Methods
Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.Aims
Methods
Radiological residual acetabular dysplasia (RAD) has been reported in up to 30% of children who had successful brace treatment of infant developmental dysplasia of the hip (DDH). Predicting those who will resolve and those who may need corrective surgery is important to optimize follow-up protocols. In this study we have aimed to identify the prevalence and predictors of RAD at two years and five years post-bracing. This was a single-centre, prospective longitudinal cohort study of infants with DDH managed using a published, standardized Pavlik harness protocol between January 2012 and December 2016. RAD was measured at two years’ mean follow-up using acetabular index-lateral edge (AI-L) and acetabular index-sourcil (AI-S), and at five years using AI-L, AI-S, centre-edge angle (CEA), and acetabular depth ratio (ADR). Each hip was classified based on published normative values for normal, borderline (1 to 2 standard deviations (SDs)), or dysplastic (> 2 SDs) based on sex, age, and laterality.Aims
Methods
Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA. Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators.Aims
Methods
The sacroiliac joint (SIJ) is the only mechanical connection between the axial skeleton and lower limbs. Following iliosacral resection, there is debate on whether reconstruction of the joint is necessary. There is a paucity of data comparing the outcomes of patients undergoing reconstruction and those who are not formally reconstructed. A total of 60 patients (25 females, 35 males; mean age 39 years (SD 18)) undergoing iliosacral resection were reviewed. Most resections were performed for primary malignant tumours (n = 54; 90%). The mean follow-up for surviving patients was nine years (2 to 19).Aims
Methods