The
Fractures and plastic deformities of the forearm are common in children. While axial deformities are easily recognised and treated, bowing of the radius may be overlooked. Physiological bowing is essential for full rotation of the forearm. We have used the method of Schemitsch and Richards to estimate the degree of bowing in 100 children who had not suffered a fracture of the forearm. The site of maximum bowing remained constant at 60.39% of the length of the radius (95% CI 59.65 to 61.14). The value of maximum bowing did not exceed 10% of the total length (mean value 7.21%; 95% CI 7.00 to 7.41). This study provides information that can be useful for the diagnosis of bowing and for the evaluation of post-traumatic deformities.
A method is described of measuring the lumbar spinal canal by pulsed echo ultrasound. It is simple, safe and has a high degree of accuracy. The lumbar canal has been measured in over 800 subjects including 100 mining recruits and fifty nurses between the ages of fifteen and eighteen years. Ultrasound can demonstrate the degree and extent of bony stenosis. It may have value in preventive medicine, identifying the subject at risk.
We have undertaken an All of the torn tendons had lower levels of cellular activity than the control group. This activity was lower still in the tissue nearest to the edge of the tear with the larger tears showing the lowest activity. This indicated reduced levels of tissue metabolism and infers a reduction in tendon viability. Our findings suggest that surgical repair of torn tendons of the rotator-cuff should include the more proximal, viable tissue, and may help to explain the high rate of re-rupture seen in larger tears.
Tibiofemoral alignment has a direct correlation with the survival of total knee arthroplasty. Traditionally, it has been measured using a goniometer on radiographs. We describe new software which measures this alignment on scanned radiographs by automatically detecting bones in the image. Two surgeons used conventional methods and two clerical officers used the computerised routine to assess 58 radiographs of the knee on two occasions. There were no significant differences between any of the paired comparisons. The largest mean difference detected was 1.19°. Across all comparisons, the mean correlation was 0.755. A standardised routine for measuring tibiofemoral alignment was the greatest factor in reducing error in our study. These results show that non-medical staff can reliably use the software to measure tibiofemoral alignment. It has the potential to measure all the parameters recommended by the Knee Society.
The orientation of an acetabulum or an acetabular prosthesis may be described by its inclination and anteversion. Orientation can be assessed anatomically, radiographically, and by direct observation at operation. The angles of inclination and anteversion determined by these three methods differ because they have different spatial arrangements. There are therefore three distinct definitions of inclination and anteversion. This paper analyses the differences between the definitions and provides nomograms to convert from one to another. It is recommended that the operative definitions be used to describe the orientation of prostheses and that the anatomical definitions be used for dysplastic acetabula.
Surgeons need to be able to measure angles and distances in three dimensions in the planning and assessment of knee replacement. Computed tomography (CT) offers the accuracy needed but involves greater radiation exposure to patients than traditional long-leg standing radiographs, which give very little information outside the plane of the image. There is considerable variation in CT radiation doses between research centres, scanning protocols and individual scanners, and ethics committees are rightly demanding more consistency in this area. By refining the CT scanning protocol we have reduced the effective radiation dose received by the patient down to the equivalent of one long-leg standing radiograph. Because of this, it will be more acceptable to obtain the three-dimensional data set produced by CT scanning. Surgeons will be able to document the impact of implant position on outcome with greater precision.
Ultrasound can be used to outline the spinous processes and the laminae, and thus to measure axial rotation. Using our own technique, we measured vertebral rotation in 47 patients with idiopathic scoliosis. There was a strong linear relationship between the Cobb angle and the rotation of the apical vertebra in untreated patients, but this relationship was lost in patients who had had brace treatment. Vertebral rotation can easily be measured by ultrasound. This is a harmless and fairly rapid investigation which can be used at routine follow-up examination of patients with idiopathic scoliosis.
Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers. The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty.
Polyethylene particulate wear debris continues to be implicated in the aetiology of aseptic loosening following knee arthroplasty. The Oxford unicompartmental knee arthroplasty employs a spherical femoral component and a fully congruous meniscal bearing to increase contact area and theoretically reduce the potential for polyethylene wear. This study measures the In this The results from this
Our objectives were to establish the envelope of passive movement and to demonstrate the kinematic behaviour of the knee during standard clinical tests before and after reconstruction of the anterior cruciate ligament (ACL). An electromagnetic device was used to measure movement of the joint during surgery. Reconstruction of the ACL significantly reduced the overall envelope of tibial rotation (10° to 90° flexion), moved this envelope into external rotation from 0° to 20° flexion, and reduced the anterior position of the tibial plateau (5° to 30° flexion) (p <
0.05 for all). During the pivot-shift test in early flexion there was progressive anterior tibial subluxation with internal rotation. These subluxations reversed suddenly around a mean position of 36 ± 9° of flexion of the knee and consisted of an external tibial rotation of 13 ± 8° combined with a posterior tibial translation of 12 ± 8 mm. This abnormal movement was abolished after reconstruction of the ACL.
We carried out a prospective study over a period of 12 months to measure the exposure to radiation of the hands of a dedicated foot and ankle surgeon. A thermoluminescent dosimeter ring (TLD) was used to measure the cumulative dose of radiation. Fluoroscopy was used in operations on the foot and ankle. The total screening time was 3028 s, with a mean time per procedure of 37.4 s (0.6 to 197). This correlated positively with the number of procedures performed (r = 0.92, p <
0.001), and with the dose of radiation in both the left (r = 0.85, p = 0.0005) and right TLDs (r = 0.59, p = 0.419). There was no significant difference in the dose of radiation between the two hands ( This is a simple and convenient method for evaluating the exposure of a single surgeon to radiation. The radiation detected was well below the annual dose limit set by the International Commission on Radiological Protection.