Advertisement for orthosearch.org.uk
Results 61 - 80 of 122
Results per page:
Bone & Joint Research
Vol. 7, Issue 6 | Pages 397 - 405
1 Jun 2018
Morcos MW Al-Jallad H Li J Farquharson C Millán JL Hamdy RC Murshed M

Objectives

Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice.

Methods

Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests.


Objectives

The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage.

Methods

Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 8 - 13
1 Jan 2017
Acklin YP Zderic I Grechenig S Richards RG Schmitz P Gueorguiev B

Objectives

Osteosynthesis of anterior pubic ramus fractures using one large-diameter screw can be challenging in terms of both surgical procedure and fixation stability. Small-fragment screws have the advantage of following the pelvic cortex and being more flexible.

The aim of the present study was to biomechanically compare retrograde intramedullary fixation of the superior pubic ramus using either one large- or two small-diameter screws.

Materials and Methods

A total of 12 human cadaveric hemipelvises were analysed in a matched pair study design. Bone mineral density of the specimens was 68 mgHA/cm3 (standard deviation (sd) 52). The anterior pelvic ring fracture was fixed with either one 7.3 mm cannulated screw (Group 1) or two 3.5 mm pelvic cortex screws (Group 2). Progressively increasing cyclic axial loading was applied through the acetabulum. Relative movements in terms of interfragmentary displacement and gap angle at the fracture site were evaluated by means of optical movement tracking. The Wilcoxon signed-rank test was applied to identify significant differences between the groups


Bone & Joint Research
Vol. 6, Issue 5 | Pages 331 - 336
1 May 2017
Yamauchi R Itabashi T Wada K Tanaka T Kumagai G Ishibashi Y

Objectives

Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants.

Methods

Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.


Bone & Joint 360
Vol. 6, Issue 3 | Pages 28 - 30
1 Jun 2017


Bone & Joint Research
Vol. 5, Issue 10 | Pages 453 - 460
1 Oct 2016
Ernstbrunner L Werthel J Hatta T Thoreson AR Resch H An K Moroder P

Objectives

The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo.

Methods

Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives

We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days.

Materials and Methods

Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry.


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 59 - 65
1 Jan 2017
Krause F Barandun A Klammer G Zderic I Gueorguiev B Schmid T

Aims

To assess the effect of high tibial and distal femoral osteotomies (HTO and DFO) on the pressure characteristics of the ankle joint.

Materials and Methods

Varus and valgus malalignment of the knee was simulated in human cadaver full-length legs. Testing included four measurements: baseline malalignment, 5° and 10° re-aligning osteotomy, and control baseline malalignment. For HTO, testing was rerun with the subtalar joint fixed. In order to represent half body weight, a 300 N force was applied onto the femoral head. Intra-articular sensors captured ankle pressure.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1289 - 1296
1 Sep 2016
McNally MA Ferguson JY Lau ACK Diefenbeck M Scarborough M Ramsden AJ Atkins BL

Aims

Chronic osteomyelitis may recur if dead space management, after excision of infected bone, is inadequate. This study describes the results of a strategy for the management of deep bone infection and evaluates a new antibiotic-loaded biocomposite in the eradication of infection from bone defects.

Patients and Methods

We report a prospective study of 100 patients with chronic osteomyelitis, in 105 bones. Osteomyelitis followed injury or surgery in 81 patients. Nine had concomitant septic arthritis. 80 patients had comorbidities (Cierny-Mader (C-M) Class B hosts). Ten had infected nonunions.

All patients were treated by a multidisciplinary team with a single-stage protocol including debridement, multiple sampling, culture-specific systemic antibiotics, stabilisation, dead space filling with the biocomposite and primary skin closure.


Bone & Joint 360
Vol. 5, Issue 3 | Pages 17 - 19
1 Jun 2016


Bone & Joint 360
Vol. 5, Issue 3 | Pages 26 - 28
1 Jun 2016


Bone & Joint Research
Vol. 6, Issue 1 | Pages 57 - 65
1 Jan 2017
Gumucio JP Flood MD Bedi A Kramer HF Russell AJ Mendias CL

Objectives

Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics.

Methods

Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1657 - 1661
1 Dec 2015
Taranu R Rushton PRP Serrano-Pedraza I Holder L Wallace WA Candal-Couto JJ

Dislocation of the acromioclavicular joint is a relatively common injury and a number of surgical interventions have been described for its treatment. Recently, a synthetic ligament device has become available and been successfully used, however, like other non-native solutions, a compromise must be reached when choosing non-anatomical locations for their placement. This cadaveric study aimed to assess the effect of different clavicular anchorage points for the Lockdown device on the reduction of acromioclavicular joint dislocations, and suggest an optimal location. We also assessed whether further stability is provided using a coracoacromial ligament transfer (a modified Neviaser technique). The acromioclavicular joint was exposed on seven fresh-frozen cadaveric shoulders. The joint was reconstructed using the Lockdown implant using four different clavicular anchorage points and reduction was measured. The coracoacromial ligament was then transferred to the lateral end of the clavicle, and the joint re-assessed. If the Lockdown ligament was secured at the level of the conoid tubercle, the acromioclavicular joint could be reduced anatomically in all cases. If placed medial or 2 cm lateral, the joint was irreducible. If the Lockdown was placed 1 cm lateral to the conoid tubercle, the joint could be reduced with difficulty in four cases. Correct placement of the Lockdown device is crucial to allow anatomical joint reduction. Even when the Lockdown was placed over the conoid tubercle, anterior clavicle displacement remained but this could be controlled using a coracoacromial ligament transfer.

Cite this article: Bone Joint J 2015;97-B:1657–61.


Bone & Joint Research
Vol. 4, Issue 9 | Pages 152 - 153
1 Sep 2015
Hamilton DF Ghert M Simpson AHRW


Bone & Joint 360
Vol. 4, Issue 5 | Pages 12 - 14
1 Oct 2015

The October 2015 Knee Roundup360 looks at: Allergy and outcome in arthroplasty; Physiotherapy and drains not such a bad combination?; Another nail in the coffin for arthroscopists?; Graft precondition hocus pocus; Extended dose steroids in knee arthritis?; Indolent peri-prosthetic infection; Computer modelling and medial knee arthritis


Bone & Joint 360
Vol. 3, Issue 4 | Pages 23 - 25
1 Aug 2014

The August 2014 Spine Roundup360 looks at: rhBMP complicates cervical spine surgery; posterior longitudinal ligament revisited; thoracolumbar posterior instrumentation without fusion in burst fractures; risk modelling for VTE events in spinal surgery; the consequences of dural tears in microdiscectomy; trends in revision spinal surgery; radiofrequency denervation likely effective in facet joint pain and hooks optimally biomechanically transition posterior instrumentation.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims

Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation.

Materials and Methods

A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force.


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1214 - 1219
1 Sep 2015
Loh BW Stokes CM Miller BG Page RS

There is an increased risk of fracture following osteoplasty of the femoral neck for cam-type femoroacetabular impingement (FAI). Resection of up to 30% of the anterolateral head–neck junction has previously been considered to be safe, however, iatrogenic fractures have been reported with resections within these limits. We re-evaluated the amount of safe resection at the anterolateral femoral head–neck junction using a biomechanically consistent model.

In total, 28 composite bones were studied in four groups: control, 10% resection, 20% resection and 30% resection. An axial load was applied to the adducted and flexed femur. Peak load, deflection at time of fracture and energy to fracture were assessed using comparison groups.

There was a marked difference in the mean peak load to fracture between the control group and the 10% resection group (p < 0.001). The control group also tolerated significantly more deflection before failure (p < 0.04). The mean peak load (p = 0.172), deflection (p = 0.547), and energy to fracture (p = 0.306) did not differ significantly between the 10%, 20%, and 30% resection groups.

Any resection of the anterolateral quadrant of the femoral head–neck junction for FAI significantly reduces the load-bearing capacity of the proximal femur. After initial resection of cortical bone, there is no further relevant loss of stability regardless of the amount of trabecular bone resected.

Based on our findings we recommend any patients who undergo anterolateral femoral head–neck junction osteoplasty should be advised to modify their post-operative routine until cortical remodelling occurs to minimise the subsequent fracture risk.

Cite this article: Bone Joint J 2015;97-B:1214–19.


Bone & Joint 360
Vol. 3, Issue 2 | Pages 26 - 28
1 Apr 2014

The April 2014 Research Roundup360 looks at: scientific writing needed in orthopaedic papers; antiseptics and osteoblasts; thromboembolic management in orthopaedic patients; nicotine and obesity in post-operative complications; defining the “Patient Acceptable Symptom State”; and cheap and nasty implants of poor quality.


Bone & Joint 360
Vol. 4, Issue 3 | Pages 29 - 30
1 Jun 2015

The June 2015 Research Roundup360 looks at: Tranexamic acid: just give it – it’s not important how!; The anterolateral ligament re-examined; Warfarin a poor post-operative agent; Passive exoskeleton the orthosis of the future?; Musculoskeletal medicine: a dark art to UK medical students?; Alendronic acid and bone density post arthroplasty; Apples with oranges? Knee functional scores revisited