We describe the results of 81 consecutive revision
total hip replacements with impaction grafting in 79 patients using
a collared polished chrome–cobalt stem, customised in length according
to the extent of distal bone loss. Our hypothesis was that the features
of this stem would reduce the rate of femoral fracture and subsidence
of the stem. The mean follow-up was 12 years (8 to 15). No intra-operative
fracture or significant subsidence occurred. Only one patient suffered
a post-operative diaphyseal fracture, which was associated with
a fall. All but one femur showed incorporation of the graft. No
revision for aseptic loosening was recorded. The rate of survival of the femoral component at 12 years, using
further femoral revision as the endpoint, was 100% (95% confidence
interval (CI) 95.9 to 100), and at nine years using re-operation
for any reason as the endpoint, was 94.6% (95% CI 92.0 to 97.2). These results suggest that a customised cemented polished stem
individually adapted to the extent of bone loss and with a collar
may reduce subsidence and the rate of fracture while maintaining
the durability of the fixation.
National Institute of Clinical Excellence guidelines
state that cemented stems with an Orthopaedic Data Evaluation Panel
(ODEP) rating of >
3B should be used for hemiarthroplasty when treating
an intracapsular fracture of the femoral neck. These recommendations
are based on studies in which most, if not all stems, did not hold
such a rating. This case-control study compared the outcome of hemiarthroplasty
using a cemented (Exeter) or uncemented (Corail) femoral stem. These
are the two prostheses most commonly used in hip arthroplasty in
the UK. Data were obtained from two centres; most patients had undergone
hemiarthroplasty using a cemented Exeter stem (n = 292/412). Patients
were matched for all factors that have been shown to influence mortality
after an intracapsular fracture of the neck of the femur. Outcome
measures included: complications, re-operations and mortality rates
at two, seven, 30 and 365 days post-operatively. Comparable outcomes
for the two stems were seen. There were more intra-operative complications in the uncemented
group (13% This study therefore supports the use of both cemented and uncemented
stems of proven design, with an ODEP rating of 10A, in patients
with an intracapsular fracture of the neck of the femur. Cite this article:
We determined the midterm survival, incidence
of peri-prosthetic fracture and the enhancement of the width of
the femur when combining struts and impacted bone allografts in
24 patients (25 hips) with severe femoral bone loss who underwent
revision hip surgery. The pre-operative diagnosis was aseptic loosening
in 16 hips, second-stage reconstruction in seven, peri-prosthetic
fracture in one and stem fracture in one hip. A total of 14 hips
presented with an Endoklinik grade 4 defect and 11 hips a grade
3 defect. The mean pre-operative Merle D’Aubigné and Postel score
was 5.5 points (1 to 8). The survivorship was 96% (95% confidence interval 72 to 98) at
a mean of 54.5 months (36Â to 109). The mean functional score was
17.3 points (16 to 18). One patient in which the strut did not completely
bypass the femoral defect was further revised using a long cemented
stem due to peri-prosthetic fracture at six months post-operatively.
The mean subsidence of the stem was 1.6 mm (1 to 3). There was no
evidence of osteolysis, resorption or radiolucencies during follow-up
in any hip. Femoral width was enhanced by a mean of 41% (19% to
82%). A total of 24 hips had partial or complete bridging of the
strut allografts. This combined biological method was associated with a favourable
survivorship, a low incidence of peri-prosthetic fracture and enhancement
of the width of the femur in revision total hip replacement in patients
with severe proximal femoral bone loss.
Increasing follow-up identifies the outcome in younger patients who have undergone total hip replacement (THR) and reveals the true potential for survival of the prosthesis. We identified 28 patients (39 THRs) who had undergone cemented Charnley low friction arthroplasty between 1969 and 2001. Their mean age at operation was 17.9 years (12 to 19) and the maximum follow-up was 34 years. Two patients (4 THRs) were lost to follow-up, 13 (16 THRs) were revised at a mean period of 19.1 years (8 to 34) and 13 (19 THRs) continue to attend regular follow-up at a mean of 12.6 years (2.3 to 29). In this surviving group one acetabular component was radiologically loose and all femoral components were secure. In all the patients the diameter of the femoral head was 22.225 mm with Charnley femoral components used in 29 hips and C-stem femoral components in ten. In young patients who require THR the acetabular bone stock is generally a limiting factor for the size of the component. Excellent long-term results can be obtained with a cemented polyethylene acetabular component and a femoral head of small diameter.
This was a safety study where the hypothesis was that the newer-design CPCS femoral stem would demonstrate similar early clinical results and micromovement to the well-established Exeter stem. Both are collarless, tapered, polished cemented stems, the only difference being a slight lateral to medial taper with the CPCS stem. A total of 34 patients were enrolled in a single-blinded randomised controlled trial in which 17 patients received a dedicated radiostereometric CPCS stem and 17 a radiostereometric Exeter stem. No difference was found in any of the outcome measures pre-operatively or post-operatively between groups. At two years, the mean subsidence for the CPCS stem was nearly half that seen for the Exeter stem (0.77 mm (−0.943 to 1.77) and 1.25 mm (0.719 to 1.625), respectively; p = 0.032). In contrast, the mean internal rotation of the CPCS stem was approximately twice that of the Exeter (1.61° (−1.07° to 4.33°) and 0.59° (0.97° to 1.64°), respectively; p = 0.048). Other migration patterns were not significantly different between the stems. The subtle differences in designs may explain the different patterns of migration. Comparable migration with the Exeter stem suggests that the CPCS design will perform well in the long term.
Femoral impaction bone allografting has been developed as a means of restoring bone stock in revision total hip replacement. We report the results of 75 consecutive patients (75 hips) with a mean age of 68 years (35 to 87) who underwent impaction grafting using the Exeter collarless, polished, tapered femoral stem between 1992 and 1998. The mean follow-up period was 10.5 years (6.3 to 14.1). The median pre-operative bone defect score was 3 (interquartile range (IQR) 2 to 3) using the Endo-Klinik classification. The median subsidence at one year post-operatively was 2 mm (IQR 1 to 3). At the final review the median Harris hip score was 80.6 (IQR 67.6 to 88.9) and the median subsidence 2 mm (IQR 1 to 4). Incorporation of the allograft into trabecular bone and secondary remodelling were noted radiologically at the final follow-up in 87% (393 of 452 zones) and 40% (181 of 452 zones), respectively. Subsidence of the Exeter stem correlated with the pre-operative Endo-Klinik bone loss score (p = 0.037). The degree of subsidence at one year had a strong association with long-term subsidence (p <
0.001). There was a significant correlation between previous revision surgery and a poor Harris Hip score (p = 0.028), and those who had undergone previous revision surgery for infection had a higher risk of complications (p = 0.048). Survivorship at 10.5 years with any further femoral operation as the end-point was 92% (95% confidence interval 82 to 97).
We examined whether a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) was as effective as a non-selective inhibitor (ibuprofen) for the prevention of heterotopic ossification following total hip replacement. A total of 250 patients were randomised to receive celecoxib (200 mg b/d) or ibuprofen (400 mg t.d.s) for ten days after surgery. Anteroposterior radiographs of the pelvis were examined for heterotopic ossification three months after surgery. Of the 250 patients, 240 were available for assessment. Heterotopic ossification was more common in the ibuprofen group (none 40.7% (50), Brooker class I 46.3% (57), classes II and III 13.0% (16)) than in the celecoxib group (none 59.0% (69), Brooker class I 35.9% (42), classes II and III 5.1% (6), p = 0.002). Celecoxib was more effective than ibuprofen in preventing heterotopic bone formation after total hip replacement.
Hip resurfacing is being performed more frequently in the United Kingdom. The possible benefits include more accurate restoration of leg length, femoral offset and femoral anteversion than occurs after total hip arthroplasty (THA). We compared anteroposterior radiographs from 26 patients who had undergone hybrid THA (uncemented cup/cemented stem), with 28 who had undergone Birmingham Hip Resurfacing arthroplasty (BHR). We measured the femoral offset, femoral length, acetabular offset and acetabular height with reference to the normal contralateral hip. The data were analysed by paired There was a significant reduction in femoral offset (p = 0.0004) and increase in length (p = 0.001) in the BHR group. In the THA group, there was a significant reduction in acetabular offset (p = 0.0003), but femoral offset and overall hip length were restored accurately. We conclude that hip resurfacing does not restore hip mechanics as accurately as THA.
We present the medium-term results of hybrid total hip arthroplasties using pre-coated stems with a second-generation cementing technique. The 128 hips in 111 patients (18 men and 93 women) were followed up at a mean of 11 years after surgery. The mean age at the time of surgery was 61 years. Both components of one hip were removed at ten months after surgery for infection. None of the other 127 femoral components showed possible, probable, or definite loosening at the most recent follow-up. Five acetabular components were revised for aseptic loosening, recurrent dislocation, or displacement of the polyethylene liner from the metal shell. The mean Harris hip score at follow-up was 84 points. A pre-coated femoral component with a second-generation cementing technique provides good clinical function and survival in the medium term.
We studied prospectively the long-term results of the Charnley Elite-Plus femoral stem in 184 consecutive young patients (194 hips). There were 130 men and 54 women with a mean age of 49.1 years (21 to 60). The predominant diagnosis was osteonecrosis of the femoral head (63.6%, 117 patients). Clinical and radiological evaluation was undertaken at each follow-up. The mean follow-up was 11.2 years (10 to 12). The mean pre-operative Harris hip score was 43.4 (12 to 49) which improved to 91 (59 to 100) at the final follow-up. The survival of the femoral stem at 12 years was 99% with revision as the end-point. The mean annual linear wear of the polyethylene liner was 0.17 mm (0.13 to 0.22). The prevalence of acetabular osteolysis was 10.8% (21 hips) and osteolysis of the calcar femorale 12.9% (25 hips). A third-generation cementing technique, accurate alignment of the stem and the use of a 22 mm zirconia head were important factors in the prevention of aseptic loosening of the Elite Plus femoral stem in these high-risk young patients.
The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.
We present a retrospective series of 170 cemented titanium straight-stem femoral components combined with two types of femoral head: cobalt-chromium (CoCr) alloy (114 heads) and alumina ceramic (50 heads). Of the study group, 55 patients (55 stems) had died and six (six stems) were lost to follow-up. At a mean of 13.1 years (3 to 15.3) 26 stems had been revised for aseptic loosening. The mean follow-up time for stable stems was 15.1 years (12.1 to 16.6). Survival of the stem at 15 years was 75.4% (95% confidence interval (CI) 67.3 to 83.5) with aseptic failure (including radiological failure) as the end-point, irrespective of the nature of the head and the quality of the cement mantle. Survival of the stem at 15 years was 79.1% (95% CI 69.8 to 88.4) and 67.1% (95% CI 51.3 to 82.9) with the CoCr alloy and ceramic heads, respectively. The quality of the cement mantle was graded as a function of stem coverage: stems with complete tip coverage (type 1) had an 84.9% (95% CI 77.6 to 92.2) survival at 15 years, compared with those with a poor tip coverage (type 2) which had a survival of only 22.4% (95% CI 2.4 to 42.4). The poor quality of the cement mantle and the implantation of an alumina head substantially lowered the survival of the stem. In our opinion, further use of the cemented titanium alloy straight-stem femoral components used in our series is undesirable.
We performed a three-year radiostereometric analysis (RSA) study of the Elite Plus femoral component on 25 patients undergoing primary total hip replacement. Additional assessments and measurements from standard radiographs were also made. Subsidence of the stem occurred at the cement-stem interface. At 36 months the subsidence of the stem centroid was a mean of 0.30 mm (0.02 to 1.28), and was continuing at a slow rate. At the same time point, internal rotation and posterior migration of the femoral head had ceased. One stem migrated excessively and additional assessments suggested that this was probably due to high patient demand. The failure rate of 4% in our study is consistent with data from arthroplasty registers but contrasts with poor results from another RSA study, and from some clinical studies. We believe that the surgical technique, particularly the use of high-viscosity cement, may have been an important factor contributing to our results.
Resurfacing arthroplasty of the hip is being performed more frequently in the United Kingdom. The majority of these patients are younger than 55 years of age, and in this group the key benefits include conservation of femoral bone stock and the potential reduction in the rate of dislocation afforded by the larger resurfacing head. Early aseptic loosening is well recognised in patients younger than 55 years of age, and proponents of resurfacing believe that the improved wear characteristics of the metal-on-metal bearing may improve the long-term survival of this implant. There has been some concern, however, that resurfacing may not be conservative of acetabular bone. We compared a series of 33 consecutive patients who had a hybrid total hip arthroplasty with an uncemented acetabular component and a cemented femoral implant, with 35 patients undergoing a Birmingham hip resurfacing arthroplasty. We compared the diameter of the implanted acetabulum in both groups and, because they were not directly comparable, we corrected for patient size by measuring the diameter of the contralateral femoral head. The data were analysed using unpaired There was a significantly larger acetabulum in the Birmingham arthroplasty group (mean diameter 56.6 mm