Advertisement for orthosearch.org.uk
Results 61 - 80 of 104
Results per page:
Bone & Joint 360
Vol. 7, Issue 2 | Pages 35 - 38
1 Apr 2018


Bone & Joint Research
Vol. 7, Issue 2 | Pages 139 - 147
1 Feb 2018
Takahara S Lee SY Iwakura T Oe K Fukui T Okumachi E Waki T Arakura M Sakai Y Nishida K Kuroda R Niikura T

Objectives

Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM.

Methods

Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.


Bone & Joint 360
Vol. 5, Issue 1 | Pages 2 - 8
1 Feb 2016
Bryson D Shivji F Price K Lawniczak D Chell J Hunter J


Bone & Joint 360
Vol. 5, Issue 4 | Pages 34 - 35
1 Aug 2016


Bone & Joint 360
Vol. 6, Issue 5 | Pages 33 - 35
1 Oct 2017


Bone & Joint 360
Vol. 6, Issue 3 | Pages 14 - 16
1 Jun 2017


Bone & Joint 360
Vol. 6, Issue 3 | Pages 2 - 6
1 Jun 2017
Das A Shivji F Ollivere BJ


Bone & Joint Research
Vol. 6, Issue 7 | Pages 405 - 413
1 Jul 2017
Matharu GS Judge A Murray DW Pandit HG

Objectives

Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision.

Methods

We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 144 - 153
1 Mar 2017
Kharwadkar N Mayne B Lawrence JE Khanduja V

Objectives

Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs.

Methods

We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter.

Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment.

Cite this article: Bone Joint J 2015; 97-B:1144–51.


Bone & Joint 360
Vol. 3, Issue 6 | Pages 35 - 36
1 Dec 2014
Das A


Bone & Joint 360
Vol. 5, Issue 5 | Pages 27 - 29
1 Oct 2016


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 713 - 718
1 May 2012
Kaiser MM Zachert G Wendlandt R Eggert R Stratmann C Gros N Schulze-Hessing M Rapp M

Elastic stable intramedullary nailing (ESIN) is generally acknowledged to be the treatment of choice for displaced diaphyseal femoral fractures in children over the age of three years, although complication rates of up to 50% are described. Pre-bending the nails is recommended, but there are no published data to support this. Using synthetic bones and a standardised simulated fracture, we performed biomechanical testing to determine the influence on the stability of the fracture of pre-bending the nails before implantation. Standard ESIN was performed on 24 synthetic femoral models with a spiral fracture. In eight cases the nails were inserted without any pre-bending, in a further eight cases they were pre-bent to 30° and in the last group of eight cases they were pre-bent to 60°. Mechanical testing revealed that pre-bending to 60° produced a significant increase in the stiffness or stability of the fracture. Pre-bending to 60° showed a significant positive influence on the stiffness compared with unbent nails. Pre-bending to 30° improved stiffness only slightly.

These findings validate the recommendations for pre-bending, but the degree of pre-bend should exceed 30°. Adopting higher degrees of pre-bending should improve stability in spiral fractures and reduce the complications of varus deformity and shortening.


Bone & Joint 360
Vol. 5, Issue 3 | Pages 10 - 12
1 Jun 2016


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 884 - 891
1 Jul 2016
Elliott DS Newman KJH Forward DP Hahn DM Ollivere B Kojima K Handley R Rossiter ND Wixted JJ Smith RM Moran CG

This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This ‘bone-healing unit’ produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff’s law, Perren’s strain theory and Frost’s concept of the “mechanostat”. In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture – healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft.

Cite this article: Bone Joint J 2016;98-B:884–91.


Bone & Joint 360
Vol. 5, Issue 1 | Pages 30 - 31
1 Feb 2016


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1289 - 1295
1 Oct 2011
Yoon RS Hwang JS Beebe KS

For over a decade, bisphosphonate administration has evolved and become the cornerstone of the prevention and treatment of fragility fractures. Millions of post-menopausal women have relied on, and continue to depend on, the long-acting, bone density-maintaining pharmaceutical drug to prevent low-energy fractures. In return, we have seen the number of fragility fractures decrease, along with associated costs and emotional benefits. However, with any drug, there are often concerns with side effects and complications, and this unique drug class is seeing one such complication in atypical subtrochanteric femoral fracture, counterproductive to that which it was designed to prevent. This has created concern over long-term bisphosphonate administration and its potential link to these atypical fractures. There is controversial evidence surrounding such a definitive link, and no protocol for managing these fractures.

This review offers the latest information regarding this rare but increasingly controversial adverse effect and its potential connection to one of the most successful forms of treatment that is available for the management of fragility fractures.


Bone & Joint 360
Vol. 4, Issue 6 | Pages 26 - 27
1 Dec 2015

The December 2015 Children’s orthopaedics Roundup360 looks at: Paediatric femoral fractures: a single incision nailing?; Lateral condylar fractures: open or percutaneous?;

Forearm refracture: the risks; Tibial spine fractures; The child’s knee in MRI; The mechanics of SUFE; Idiopathic clubfoot


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 558 - 563
1 Apr 2015
Windolf M Fischer MF Popp AW Matthys R Schwieger K Gueorguiev B Hunter JB Slongo TF

End caps are intended to prevent nail migration (push-out) in elastic stable intramedullary nailing. The aim of this study was to investigate the force at failure with and without end caps, and whether different insertion angles of nails and end caps would alter that force at failure.

Simulated oblique fractures of the diaphysis were created in 15 artificial paediatric femurs. Titanium Elastic Nails with end caps were inserted at angles of 45°, 55° and 65° in five specimens for each angle to create three study groups. Biomechanical testing was performed with axial compression until failure. An identical fracture was created in four small adult cadaveric femurs harvested from two donors (both female, aged 81 and 85 years, height 149 cm and 156 cm, respectively). All femurs were tested without and subsequently with end caps inserted at 45°.

In the artificial femurs, maximum force was not significantly different between the three groups (p = 0.613). Push-out force was significantly higher in the cadaveric specimens with the use of end caps by an up to sixfold load increase (830 N, standard deviation (SD) 280 vs 150 N, SD 120, respectively; p = 0.007).

These results indicate that the nail and end cap insertion angle can be varied within 20° without altering construct stability and that the risk of elastic stable intramedullary nailing push–out can be effectively reduced by the use of end caps.

Cite this article: Bone Joint J 2015;97-B:558–63.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 227 - 230
1 Feb 2012
Yang T Wang T Tsai Y Huang K

In patients with traumatic brain injury and fractures of long bones, it is often clinically observed that the rate of bone healing and extent of callus formation are increased. However, the evidence has been unconvincing and an association between such an injury and enhanced fracture healing remains unclear. We performed a retrospective cohort study of 74 young adult patients with a mean age of 24.2 years (16 to 40) who sustained a femoral shaft fracture (AO/OTA type 32A or 32B) with or without a brain injury. All the fractures were treated with closed intramedullary nailing. The main outcome measures included the time required for bridging callus formation (BCF) and the mean callus thickness (MCT) at the final follow-up. Comparative analyses were made between the 20 patients with a brain injury and the 54 without brain injury. Subgroup comparisons were performed among the patients with a brain injury in terms of the severity of head injury, the types of intracranial haemorrhage and gender. Patients with a brain injury had an earlier appearance of BCF (p < 0.001) and a greater final MCT value (p < 0.001) than those without. There were no significant differences with respect to the time required for BCF and final MCT values in terms of the severity of head injury (p = 0.521 and p = 0.153, respectively), the types of intracranial haemorrhage (p = 0.308 and p = 0.189, respectively) and gender (p = 0.383 and p = 0.662, respectively).

These results confirm that an injury to the brain may be associated with accelerated fracture healing and enhanced callus formation. However, the severity of the injury to the brain, the type of intracranial haemorrhage and gender were not statistically significant factors in predicting the rate of bone healing and extent of final callus formation.