This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article:
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article:
Objectives. Although many clinical and experimental investigations have shed
light on muscle atrophy and intramuscular accumulation of fat after
rotator cuff disruption, none have reported on their onset in the
absence of muscle retraction. Methods. In 30 rabbits, we detached one supraspinatus (SSP) tendon and
repaired it immediately, thus preventing muscle retraction. The
animals were killed in groups of 10 at one, two and six weeks. Both
shoulders of 15 non-operated rabbits served as controls. We measured
the weight and volume of SSP muscles and quantified the cross-sectional
area of intramuscular fat (i-fat) histologically. Results. There was significant loss of muscle weight and volume after
one week (p = 0.004 and 0.003, respectively), and two weeks (both
p <
0.001) in the experimental group; which recovered to control
values after six weeks. I-fat accumulated one week after immediate repair,
greater than in the control group and statistically significant
at the mid-part of the muscle (mean 2.7% vs 1.5%,
p = 0.008). I-fat continued to accumulate up to six weeks at all sites
of the SSP muscle (all 3, p <
0.001). More fat accumulated closer
to the musculotendinous junction than at the mid-part after two
and six weeks (p = 0.012 and 0.019, respectively). Conclusion. Muscle atrophy and i-fat accumulation occur early after SSP tendon
tear and immediate repair. While early repair benefitted muscle
recovery, it did not prevent fat accumulation. SSP muscle retraction
was not essential to the muscle alterations. The divergent evolution
of muscle and fat points to different
The aim of this study was to estimate time to arthroplasty among patients with hip and knee osteoarthritis (OA), and to identify factors at enrolment to first-line intervention that are prognostic for progression to surgery. In this longitudinal register-based observational study, we identified 72,069 patients with hip and knee OA in the Better Management of Patients with Osteoarthritis Register (BOA), who were referred for first-line OA intervention, between May 2008 and December 2016. Patients were followed until the first primary arthroplasty surgery before 31 December 2016, stratified into a hip and a knee OA cohort. Data were analyzed with Kaplan-Meier and multivariable-adjusted Cox regression.Aims
Methods
Osteonecrosis of the femoral head usually affects young individuals and is responsible for up to 12% of total hip arthroplasties. The underlying
The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice. The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by dual-energy X-ray absorptiometry. The bone microstructure was determined by histomorphological changes in the femora. In addition, biochemical analysis of the serum and assessment of the messenger RNA (mRNA) levels of osteoclastic markers were performed.Aims
Methods
It is not uncommon to observe bone cement in the pelvis on radiographs after total hip replacement, a finding which is generally considered to be benign. This paper reviews some catastrophic late complications from intrapelvic methylmethacrylate. We also describe a case of progressive, unbearable dyspareunia beginning three years after total hip replacement. A possible explanation of the
Cervical radiculopathy is a significant cause of pain and morbidity. For patients with severe and poorly controlled symptoms who may not be candidates for surgical management, treatment with transforaminal epidural steroid injections (CTFESI) has gained widespread acceptance. However, a paucity of high-quality evidence supporting their use balanced against perceived high risks of the procedure potentially undermines the confidence of clinicians who use the technique. We undertook a systematic review of the available literature regarding CTFESI to assess the clinical efficacy and complication rates of the procedure. OVID, MEDLINE, and Embase database searches were performed independently by two authors who subsequently completed title, abstract, and full-text screening for inclusion against set criteria. Clinical outcomes and complication data were extracted, and a narrative synthesis presented.Aims
Methods
There has been a marked increase in the number of hip arthroscopies performed over the past 16 years, primarily in the management of femoroacetabular impingement (FAI). Insights into the pathoanatomy of FAI, and high-level evidence supporting the clinical effectiveness of arthroscopy in the management of FAI, have fuelled this trend. Arthroscopic management of labral tears with repair may have superior results compared with debridement, and there is now emerging evidence to support reconstructive options where repair is not possible. In situations where an interportal capsulotomy is performed to facilitate access, data now support closure of the capsule in selective cases where there is an increased risk of postoperative instability. Preoperative planning is an integral component of bony corrective surgery in FAI, and this has evolved to include computer-planned resection. However, the benefit of this remains controversial. Hip instability is now widely accepted, and diagnostic criteria and treatment are becoming increasingly refined. Instability can also be present with FAI or develop as a result of FAI treatment. In this annotation, we outline major current controversies relating to decision-making in hip arthroscopy for FAI. Cite this article:
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.Aims
Methods
It has been suggested that transient osteoporosis or the bone marrow oedema syndrome (BMOS) may be the initial phase of osteonecrosis of the femoral head (ONFH) and that there may be a common
Clinical assessment of equinus in children before and after operation was made over a twenty-year period (1958-1978), and three groups were defined. Forty-three muscles (Group I) had abnormal shortening without spasticity and the deformity progressed steadily despite immediate improvement after operation; this was considered to be the result of a lack of muscle growth during bone growth. Forty-one muscles (Group II) had both shortening and spasticity with an imbalance which might be unchanged after operation, or reversed or improved. Fourteen muscles (Group III) had spasticity only and progression was unpredictable and could not be defined. Improvement in gait was regularly observed in Group I in the early years after operation. In Groups II and III the results were variable. These results did not depend on surgical technique but on differences in
Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays.Aims
Methods
Previous studies on the anatomy of the lumbar spine have not clarified the precise relationship of the origin of the lumbar roots to their corresponding discs or their angulation to the dural sac. We studied 33 cadavers (25 formalin-preserved and eight fresh-frozen) and their radiographs to determine these details. All cadavers showed a gradual decrease in the angle of the nerve root from L1 to S1. The origin of the root was found to be below the corresponding disc for the L1 to L4 roots. In the formalin-preserved cadavers 8% of the L5 roots originated above, 64% below and 28% at the L4/L5 disc. In the fresh cadavers the values were 12.5%, 62.5% and 25%, respectively. For the S1 root 76% originated above and 24% at the L5-S1 disc in the formalin-preserved cadavers and 75% and 25%, respectively, in the fresh cadavers. A herniated disc usually compresses the root before division of the root sleeve. Thus, compression of the thecal sac before the origin of the root sleeve is common for L1 to L5 whereas compression at the root sleeve is common for S1. Our findings are of value in understanding the
Diurnal changes in the loads acting on the spine affect the water content and height of the intervertebral discs. We have reviewed the effects of these changes on spinal mechanics, and their possible clinical significance. Cadaveric lumbar spines subjected to periods of creep loading show a disc height change similar to the physiological change. As a result intervertebral discs bulge more, become stiffer in compression and more flexible in bending. Disc tissue becomes more elastic as its water content falls, and its affinity for water increases. Disc prolapse becomes more difficult. The neural arch and associated ligaments resist an increasing proportion of the compressive and bending stresses acting on the spine. Observations on living people show that these changes are not fully compensated for by modified muscle activity. We conclude that different spinal structures are more heavily loaded at different times of the day. Therefore, the time of onset of symptoms and signs, and any diurnal variation in their severity, may help us understand more about the
Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases.Aims
Methods
This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with 3D reconstruction? A total of 45 patients with a thoracic AIS which needed surgical correction and fusion were included in a prospective study. All patients underwent pulmonary function testing (PFT) and low-dose biplanar radiographs both preoperatively and one year after surgery. The following measurements were recorded: forced vital capacity (FVC), slow vital capacity (SVC), and total lung capacity (TLC). Rib cage volume (RCV), maximum rib hump, main thoracic curve Cobb angle (MCCA), medial-lateral and anteroposterior diameter, and T4-T12 kyphosis were calculated from 3D reconstructions of the biplanar radiographs.Aims
Methods