This paper describes the presence of tenodesis effects in normal physiology and explores the uses of operative tenodesis in surgery of the upper limb.
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.
Intra-articular punctures and injections are performed routinely on patients with injuries to and chronic diseases of joints, to release an effusion or haemarthrosis, or to inject drugs. The purpose of this study was to investigate the accuracy of placement of the needle during this procedure. A total of 76 cadaver acromioclavicular joints were injected with a solution containing methyl blue and subsequently dissected to distinguish intra- from peri-articular injection. In order to assess the importance of experience in achieving accurate placement, half of the injections were performed by an inexperienced resident and half by a skilled specialist. The specialist injected a further 20 cadaver acromioclavicular joints with the aid of an image intensifier. The overall frequency of peri-articular injection was much higher than expected at 43% (33 of 76) overall, with 42% (16 of 38) by the specialist and 45% (17 of 38) by the resident. The specialist entered the joint in all 20 cases when using the image intensifier. Correct positioning of the needle in the joint should be facilitated by fluoroscopy, thereby guaranteeing an intra-articular injection.
We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis. FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1). Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.
We performed 114 consecutive primary total hip arthroplasties with a cementless expansion acetabular component in 101 patients for advanced osteonecrosis of the femoral head. The mean age of the patients at surgery was 51 years (36 to 62) and the mean length of follow-up was 110 months (84 to 129). The mean pre-operative Harris hip score of 47 points improved to 93 points at final follow-up. The polyethylene liner was exchanged in two hips during this period and one broken acetabular component was revised. The mean linear wear rate of polyethylene was 0.07 mm/year and peri-acetabular osteolysis was seen in two hips (1.9%). Kaplan-Meier analysis indicated that the survival of the acetabular component without revision was 97.8% (95% confidence interval 0.956 to 1.000) at ten years. Our study has shown that the results of THA with a cementless expansion acetabular component and an alumina-polyethylene bearing surface are good.
Surgeons remain concerned that ceramic hip prostheses may fail catastrophically if either the head or the liner is fractured. We report two patients, each with a ceramic-on-ceramic total hip replacement who sustained high-energy trauma sufficient to cause a displaced periprosthetic acetabular fracture in whom the ceramic bearings survived intact. Simultaneous fixation of the acetabular fracture, revision of the cementless acetabular prosthesis and exchange of the ceramic bearings were performed successfully in both patients. Improved methods of manufacture of new types of alumina ceramic with a smaller grain size, and lower porosity, have produced much stronger bearings. Whether patients should be advised to restrict high-impact activities in order to protect these modern ceramic bearings from fracture remains controversial.
This was a safety study where the hypothesis was that the newer-design CPCS femoral stem would demonstrate similar early clinical results and micromovement to the well-established Exeter stem. Both are collarless, tapered, polished cemented stems, the only difference being a slight lateral to medial taper with the CPCS stem. A total of 34 patients were enrolled in a single-blinded randomised controlled trial in which 17 patients received a dedicated radiostereometric CPCS stem and 17 a radiostereometric Exeter stem. No difference was found in any of the outcome measures pre-operatively or post-operatively between groups. At two years, the mean subsidence for the CPCS stem was nearly half that seen for the Exeter stem (0.77 mm (−0.943 to 1.77) and 1.25 mm (0.719 to 1.625), respectively; p = 0.032). In contrast, the mean internal rotation of the CPCS stem was approximately twice that of the Exeter (1.61° (−1.07° to 4.33°) and 0.59° (0.97° to 1.64°), respectively; p = 0.048). Other migration patterns were not significantly different between the stems. The subtle differences in designs may explain the different patterns of migration. Comparable migration with the Exeter stem suggests that the CPCS design will perform well in the long term.
In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μ A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts.
We sought to establish the incidence of joint failure secondary to adverse reaction to metal debris (ARMD) following metal-on-metal hip resurfacing in a large, three surgeon, multicentre study involving 4226 hips with a follow-up of 10 to 142 months. Three implants were studied: the Articular Surface Replacement; the Birmingham Hip Resurfacing; and the Conserve Plus. Retrieved implants underwent analysis using a co-ordinate measuring machine to determine volumetric wear. There were 58 failures associated with ARMD. The median chromium and cobalt concentrations in the failed group were significantly higher than in the control group (p <
0.001). Survival analysis showed a failure rate in the patients with Articular Surface Replacement of 9.8% at five years, compared with <
1% at five years for the Conserve Plus and 1.5% at ten years for the Birmingham Hip Resurfacing. Two ARMD patients had relatively low wear of the retrieved components. Increased wear from the metal-on-metal bearing surface was associated with an increased rate of failure secondary to ARMD. However, the extent of tissue destruction at revision surgery did not appear to be dose-related to the volumetric wear.
We report the case of a 24-year-old man with a congenital meniscoid articular disc of the triangular fibrocartilage complex with extensor carpi ulnaris tenosynovitis. His young age, the normal articular cartilage, the lack of degenerative changes at the margins of the defect and its bilateral occurrence made this diagnosis likely. A congenital defect of the articular disc of the triangular fibrocartilage complex should not be misinterpreted as a traumatic rupture and is usually asymptomatic.
We compared a modular neck system with a non-modular system in a cementless anatomical total hip replacement (THR). Each group consisted of 74 hips with developmental hip dysplasia. Both groups had the same cementless acetabular component and the same articulation, which consisted of a conventional polyethylene liner and a 28 mm alumina head. The mean follow-up was 14.5 years (13 to 15), at which point there were significant differences in the mean total Harris hip score (modular/non-modular: 98.6 (64 to 100)/93.8 (68 to 100)), the mean range of abduction (32° (15° to 40°)/28 (0° to 40°)), use of a 10° elevated liner (31%/100%), the incidence of osteolysis (27%/79.7%) and the incidence of equal leg lengths (≥ 6 mm, 92%/61%). There was no disassociation or fracture of the modular neck. The modular system reduces the need for an elevated liner, thereby reducing the incidence of osteolysis. It gives a better range of movement and allows the surgeon to make an accurate adjustment of leg length.
Bone allografts can store and release high levels of vancomycin. We present our results of a two-stage treatment for infected hip arthroplasty with acetabular and femoral impaction grafting using vancomycin-loaded allografts. We treated 29 patients (30 hips) by removal of the implants, meticulous debridement, parenteral antibiotic therapy and second-stage reconstruction using vancomycin-supplemented impacted bone allografts and a standard cemented Charnley femoral component. The mean follow-up was 32.4 months (24 to 60). Infection control was obtained in 29 cases (re-infection rate of 3.3%; 95% confidence interval 0.08 to 17) without evidence of progressive radiolucent lines, demarcation or graft resorption. One patient had a further infection ten months after revision caused by a different pathogen. Associated post-operative complications were one traumatic periprosthetic fracture at 14 months, a single dislocation in two hips and four displacements of the greater trochanter. Vancomycin-supplemented allografts restored bone stock and provided sound fixation with a low incidence of further infection.
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.
The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes. There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes
This study used CT analysis to determine the rotational alignment of 39 painful and 26 painless fixed-bearing total knee replacements (TKRs) from a cohort of 740 NexGen Legacy posterior-stabilised and cruciate-retaining prostheses implanted between May 1996 and August 2003. The mean rotation of the tibial component was 4.3° of internal rotation (25.4° internal to 13.9° external rotation) in the painful group and 2.2° of external rotation (8.5° internal to 18.2° external rotation) in the painfree group (p = 0.024). In the painful group 17 tibial components were internally rotated more than 9° compared with none in the painfree group (p <
0.001). Additionally, six femoral components in the painful group were internally rotated more than 6° compared with none in the painfree group (p = 0.017). External rotational errors were not found to be associated with pain. Overall, 22 (56.4%) of the painful TKRs had internal rotational errors involving the femoral, the tibial or both components. It is estimated that at least 4.6% of all our TKRs have been implanted with significant internal rotational errors.
Invasive group A streptococcus (iGAS) is the most common cause of monomicrobial necrotising fasciitis. Necrotising infections of the extremities may present directly to orthopaedic surgeons or by reference from another admitting specialty. Recent epidemiological data from the Health Protection Agency suggest an increasing incidence of iGAS infection in England. Almost 40% of those affected had no predisposing illnesses or risk factors, and the proportion of children presenting with infections has risen. These observations have prompted the Chief Medical Officer for the Central Alerting System in England to write to general practitioners and hospitals, highlighting the need for clinical vigilance, early diagnosis and rapid initiation of treatment in suspected cases. The purpose of this annotation is to summarise the recent epidemiological trends, describe the presenting features and outline the current investigations and treatment of this rare but life-threatening condition.
In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation. After disc replacement the mean lumbar disc height was doubled (p <
0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p <
0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p <
0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance.
Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174°C with a diamond burr and 77°C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p <
0.001). Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner.