In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score.Objectives
Methods
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
Recent reports have suggested an increase in
the number of anterior cruciate ligament (ACL) injuries in children, although
their true incidence is unknown. The prognosis of the ACL-deficient knee in young active individuals
is poor because of secondary meniscal tears, persistent instability
and early-onset osteoarthritis. The aim of surgical reconstruction
is to provide stability while avoiding physeal injury. Techniques
of reconstruction include transphyseal, extraphyseal or partial
physeal sparing procedures. In this paper we review the management of ACL tears in skeletally
immature patients. Cite this article:
This study describes the use of the Masquelet technique to treat
segmental tibial bone loss in 12 patients. This retrospective case series reviewed 12 patients treated between
2010 and 2015 to determine their clinical outcome. Patients were
mostly male with a mean age of 36 years (16 to 62). The outcomes
recorded included union, infection and amputation. The mean follow-up
was 675 days (403 to 952). Aims
Patients and Methods
Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).Objectives
Methods
This study aimed to investigate time-dependent gene expression
of injured human anterior cruciate ligament (ACL), and to evaluate
the histological changes of the ACL remnant in terms of cellular
characterisation. Injured human ACL tissues were harvested from 105 patients undergoing
primary ACL reconstruction and divided into four phases based on
the period from injury to surgery. Phase I was <
three weeks,
phase II was three to eight weeks, phase III was eight to 20 weeks,
and phase IV was ≥ 21 weeks. Gene expressions of these tissues were
analysed in each phase by quantitative real-time polymerase chain
reaction using selected markers (collagen types 1 and 3, biglycan,
decorin, α-smooth muscle actin, IL-6, TGF-β1, MMP-1, MMP-2 and TIMP-1).
Immunohistochemical staining was also performed using primary antibodies
against CD68, CD55, Stat3 and phosphorylated-Stat3 (P-Stat3). Objectives
Methods
The April 2013 Knee Roundup360 looks at: graft tension and outcome; chondrocytes at the midterm; pre-operative deformity and failure; the designer effect; whether chondroitin sulphate really does work; whether ACL reconstruction is really required; analgesia after TKR; and degenerative meniscus.
There have been differing descriptions of the
anterolateral structures of the knee, and not all have been named
or described clearly. The aim of this study was to provide a clear
anatomical interpretation of these structures. We dissected 40 fresh-frozen
cadaveric knees to view the relevant anatomy and identified a consistent
structure in 33 knees (83%); we termed this the anterolateral ligament
of the knee. This structure passes antero-distally from an attachment
proximal and posterior to the lateral femoral epicondyle to the
margin of the lateral tibial plateau, approximately midway between
Gerdy’s tubercle and the head of the fibula. The ligament is superficial
to the lateral (fibular) collateral ligament proximally, from which
it is distinct, and separate from the capsule of the knee. In the
eight knees in which it was measured, we observed that the ligament
was isometric from 0° to 60° of flexion of the knee, then slackened
when the knee flexed further to 90° and was lengthened by imposing
tibial internal rotation. Cite this article:
The December 2015 Children’s orthopaedics Roundup360 looks at: Paediatric femoral fractures: a single incision nailing?; Lateral condylar fractures: open or percutaneous?; Forearm refracture: the risks; Tibial spine fractures; The child’s knee in MRI; The mechanics of SUFE; Idiopathic clubfoot