Advertisement for orthosearch.org.uk
Results 81 - 100 of 1196
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1482 - 1486
1 Nov 2018
Akgün D Müller M Perka C Winkler T

Aims. The aim of this study was to determine the prevalence and characteristics of C-reactive protein (CRP)-negative prosthetic joint infection (PJI) and evaluate the influence of the type of infecting organism on the CRP level. Patients and Methods. A retrospective analysis of all PJIs affecting the hip or knee that were diagnosed in our institution between March 2013 and December 2016 was performed. A total of 215 patients were included. Their mean age was 71 years (. sd. 11) and there were 118 women (55%). The median serum CRP levels were calculated for various species of organism and for patients with acute postoperative, acute haematogenous, and chronic infections. These were compared using the Kruskal–Wallis test, adjusting for multiple comparisons with Dunn’s test. The correlation between the number of positive cultures and serum CRP levels was estimated using Spearman correlation coefficient. Results. Preoperative CRP levels were normal (< 10 mg/l) in 77 patients (35.8%) with positive cultures. Low-virulent organisms were isolated in 66 PJIs (85.7%) with normal CRP levels. When grouping organisms by species, patients with an infection caused by Propionibacterium spp., coagulase-negative staphylococci (CNS), and Enterococcus faecalis had significantly lower median serum CRP levels (5.4 mg/l, 12.2 mg/l, and 23.7 mg/l, respectively), compared with those with infections caused by Staphylococcus aureus and Streptococcus spp. (194 mg/l and 89.3 mg/l, respectively; p < 0.001). Those with a chronic PJI had statistically lower median serum CRP levels (10.6 mg/l) than those with acute postoperative and acute haematogenous infections (83.7 mg/l and 149.4 mg/l, respectively; p < 0.001). There was a significant correlation between the number of positive cultures and serum CRP levels (Spearman correlation coefficient, 0.456; p < 0.001). Conclusion. The CRP level alone is not accurate as a screening tool for PJI and may yield high false-negative rates, especially if the causative organism has low virulence. Aspiration of the joint should be used for the diagnosis of PJI in patients with a chronic painful arthroplasty, irrespective of CRP level. Cite this article: Bone Joint J 2018;100-B:1482–86


Bone & Joint Research
Vol. 8, Issue 9 | Pages 414 - 424
2 Sep 2019
Schmalzl J Plumhoff P Gilbert F Gohlke F Konrads C Brunner U Jakob F Ebert R Steinert AF

Objectives. The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods. In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results. Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion. These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims. Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. Methods. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI. Results. We confirmed an interaction between miR-381 and BRD4, and showed that miR-381 overexpression inhibited the expression of BRD4 in DRG cells as well as the apoptosis of DRG cells through WNT5A via activation of Ras homologous A (RhoA)/Rho-kinase activity. Moreover, treatment of MSC-EVs rescued neuron apoptosis and promoted the recovery of SCI through inhibition of the BRD4/WNT5A axis. Conclusion. Taken altogether, miR-381 derived from MSC-EVs can promote the recovery of SCI through BRD4/WNT5A axis, providing a new perspective on SCI treatment. Cite this article: Bone Joint Res 2021;10(5):328–339


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 910 - 914
1 Aug 2019
Kiran M Donnelly TD Armstrong C Kapoor B Kumar G Peter V

Aims. Prosthetic joint infection (PJI) and aseptic loosening in total hip arthroplasty (THA) can present with pain and osteolysis. The Musculoskeletal Infection Society (MSIS) has provided criteria for the diagnosis of PJI. The aim of our study was to analyze the utility of F18-fluorodeoxyglucose (FDG) positron emission tomography (PET) CT scan in the preoperative diagnosis of septic loosening in THA, based on the current MSIS definition of prosthetic joint infection. Patients and Methods. A total of 130 painful unilateral cemented THAs with a mean follow-up of 5.17 years (. sd. 1.12) were included in this prospective study. The mean patient age was 67.5 years (. sd. 4.85). Preoperative evaluation with inflammatory markers, aspiration, and an F18 FDG PET scan were performed. Diagnostic utility tests were also performed, based on the MSIS criteria for PJI and three samples positive on culture alone. Results. The mean erythrocyte sedimentation rate, C-reactive protein, and white cell count were 47.83 mm/hr, 25.21 mg/l, and 11.05 × 10. 9. /l, respectively. The sensitivity, specificity, accuracy, negative predictive value, and false-positive rate of FDG PET compared with MSIS criteria were 94.87%, 38.46 %, 56.38%, 94.59 %, and 60.21%, respectively. The false-positive rate of FDG PET compared with culture alone was 77.4%. Conclusion. FDG PET has a definitive role in the preoperative evaluation of suspected PJI. This the first study to evaluate its utility based on MSIS criteria and compare it with microbiology results alone. However, FDG PET has a high false-positive rate. Therefore, we suggest that F18 FDG PET is useful in confirming the absence of infection, but if positive, may not be confirmatory of PJI. Cite this article: Bone Joint J 2019;101-B:910–914


Bone & Joint Research
Vol. 10, Issue 3 | Pages 156 - 165
1 Mar 2021
Yagi H Kihara S Mittwede PN Maher PL Rothenberg AC Falcione ADCM Chen A Urish KL Tuan RS Alexander PG

Aims. Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Methods. Fresh suspensions of Staphylococcus aureus (ATCC 25923) were prepared in phosphate-buffered saline (PBS) (1 × 10. 9. colony-forming units (CFUs)/ml). Periprosthetic osteomyelitis in female New Zealand white rabbits was induced by intraosseous injection of planktonic bacterial suspension into a predrilled bone tunnel prior to implant screw placement, examined at five and 28 days (n = 5/group) after surgery, and compared to a control aseptic screw group. Radiographs were obtained weekly, and blood was collected to measure ESR, CRP, and white blood cell (WBC) counts. Bone samples and implanted screws were harvested on day 28, and processed for histological analysis and viability assay of bacteria, respectively. Results. Intraosseous periprosthetic introduction of planktonic bacteria induced an acute rise in ESR and CRP that subsided by day 14, and resulted in radiologically evident periprosthetic osteolysis by day 28 accompanied by elevated WBC counts and histological evidence of bacteria in the bone tunnels after screw removal. The aseptic screw group induced no increase in ESR, and no lysis developed around the implants. Bacterial viability was confirmed by implant sonication fluid culture. Conclusion. Intraosseous periprosthetic introduction of planktonic bacteria reliably induces survivable chronic PJI in rabbits. Cite this article: Bone Joint Res 2021;10(3):156–165


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 584 - 588
1 Mar 2021
Khattak M Vellathussery Chakkalakumbil S Stevenson RA Bryson DJ Reidy MJ Talbot CL George H

Aims. The aim of this study was to determine the extent to which patient demographics, clinical presentation, and blood parameters vary in Kingella kingae septic arthritis when compared with those of other organisms, and whether this difference needs to be considered when assessing children in whom a diagnosis of septic arthritis is suspected. Methods. A prospective case series was undertaken at a single UK paediatric institution between October 2012 and November 2018 of all patients referred with suspected septic arthritis. We recorded the clinical, biochemical, and microbiological findings in all patients. Results. A total of 160 patients underwent arthrotomy for a presumed septic arthritis. Of these, no organism was identified in 61 and only 25 of these were both culture- and polymerase chain reaction (PCR)-negative. A total of 36 patients did not undergo PCR analysis. Of the remaining 99 culture- and PCR-positive patients, K. kingae was the most commonly isolated organism (42%, n = 42). The knee (n = 21), shoulder (n = 9), and hip (n = 5) were the three most commonly affected joints. A total of 28 cases (66%) of K. kingae infection were detected only on PCR. The mean age of K. kingae-positive cases (16.1 months) was significantly lower than that of those whose septic arthitis was due to other organisms (49.4 months; p < 0.001). The mean CRP was significantly lower in the K. kingae group than in the other organism group (p < 0.001). The mean ESR/CRP ratio was significantly higher in K. kingae (2.84) than in other infections (1.55; p < 0.008). The mean ESR and ESR/CRP were not significantly different from those in the 'no organism identified' group. Conclusion. K. kingae was the most commonly isolated organism from paediatric culture- and/or PCR-positive confirmed septic arthritis, with only one third of cases detected on routine cultures. It is important to develop and maintain a clinical suspicion for K. kingae infection in young patients presenting atypically. Routine PCR testing is recommended in these patients. Cite this article: Bone Joint J 2021;103-B(3):584–588


Bone & Joint Open
Vol. 2, Issue 11 | Pages 958 - 965
16 Nov 2021
Craxford S Marson BA Nightingale J Ikram A Agrawal Y Deakin D Ollivere B

Aims. Deep surgical site infection (SSI) remains an unsolved problem after hip fracture. Debridement, antibiotic, and implant retention (DAIR) has become a mainstream treatment in elective periprosthetic joint infection; however, evidence for DAIR after infected hip hemiarthroplaty is limited. Methods. Patients who underwent a hemiarthroplasty between March 2007 and August 2018 were reviewed. Multivariable binary logistic regression was performed to identify and adjust for risk factors for SSI, and to identify factors predicting a successful DAIR at one year. Results. A total of 3,966 patients were identified. The overall rate of SSI was 1.7% (51 patients (1.3%) with deep SSI, and 18 (0.45%) with superficial SSI). In all, 50 patients underwent revision surgery for infection (43 with DAIR, and seven with excision arthroplasty). After adjustment for other variables, only concurrent urinary tract infection (odds ratio (OR) 2.78, 95% confidence interval (CI) 1.57 to 4.92; p < 0.001) and increasing delay to theatre for treatment of the fracture (OR 1.31 per day, 95% CI 1.12 to 1.52; p < 0.001) were predictors of developing a SSI, while a cemented arthroplasty was protective (OR 0.54, 95% CI 0.31 to 0.96; p = 0.031). In all, nine patients (20.9%) were alive at one year with a functioning hemiarthroplasty following DAIR, 20 (46.5%) required multiple surgical debridements after an initial DAIR, and 18 were converted to an excision arthroplasty due to persistent infection, with six were alive at one year. The culture of any gram-negative organism reduced success rates to 12.5% (no cases were successful with methicillin-resistant Staphylococcus aureus or Pseudomonas infection). Favourable organisms included Citrobacter and Proteus (100% cure rate). The all-cause mortality at one year after deep SSI was 55.87% versus 24.9% without deep infection. Conclusion. Deep infection remains a devastating complication regardless of the treatment strategy employed. Success rates of DAIR are poor compared to total hip arthroplasty, and should be reserved for favourable organisms in patients able to tolerate multiple surgical procedures. Cite this article: Bone Jt Open 2021;2(11):958–965


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives. The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). Methods. The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus. Results. The 16s rDNA test proved to be very robust and was able to provide a result in 97% of all samples within 25 minutes. The 16s rDNA test was able to diagnose PJI with a sensitivity of 87.5% and 82%, and a specificity of 100% and 89%, in the proof-of-principle and validation cohorts, respectively. The microbiological culture of synovial fluid achieved a sensitivity of 80% and a specificity of 93% in the validation cohort. Conclusion. The 16s rDNA test offers reliable intraoperative detection of all bacterial species within 25 minutes with a sensitivity and specificity comparable with those of conventional microbiological culture of synovial fluid for the detection of PJI. The 16s rDNA test performance is independent of possible blood contamination, culture time and bacterial species. Cite this article: V. Janz, J. Schoon, C. Morgenstern, B. Preininger, S. Reinke, G. Duda, A. Breitbach, C. F. Perka, S. Geissler. Rapid detection of periprosthetic joint infection using a combination of 16s rDNA polymerase chain reaction and lateral flow immunoassay: A Pilot Study. Bone Joint Res 2018;7:12–19. DOI: 10.1302/2046-3758.71.BJR-2017-0103.R2


Bone & Joint Open
Vol. 3, Issue 1 | Pages 54 - 60
14 Jan 2022
Leo DG Green G Eastwood DM Bridgens A Gelfer Y

Aims. The aim of this study is to define a core outcome set (COS) to allow consistency in outcome reporting amongst studies investigating the management of orthopaedic treatment in children with spinal dysraphism (SD). Methods. Relevant outcomes will be identified in a four-stage process from both the literature and key stakeholders (patients, their families, and clinical professionals). Previous outcomes used in clinical studies will be identified through a systematic review of the literature, and each outcome will be assigned to one of the five core areas, defined by the Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT). Additional possible outcomes will be identified through consultation with patients affected by SD and their families. Results. Outcomes identified in these stages will be included in a two-round Delphi process that will involve key stakeholders in the management of SD. A final list including the identified outcomes will then be summarized in a consensus meeting attended by representatives of the key stakeholders groups. Conclusion. The best approach to provision of orthopaedic care in patients with SD is yet to be decided. The reporting of different outcomes to define success among studies, often based on personal preferences and local culture, has made it difficult to compare the effect of treatments for this condition. The development of a COS for orthopaedic management in SD will enable meaningful reporting and facilitate comparisons in future clinical trials, thereby assisting complex decision-making in the clinical management of these children. Cite this article: Bone Jt Open 2022;3(1):54–60


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


Bone & Joint Research
Vol. 10, Issue 1 | Pages 77 - 84
1 Jan 2021
Milstrey A Rosslenbroich S Everding J Raschke MJ Richards RG Moriarty TF Puetzler J

Aims. Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on Staphylococcus aureus biofilms in vitro in the presence and absence of antibiotic agents. Methods. S. aureus biofilms were grown on titanium discs (13 mm × 4 mm) in a bioreactor for 48 hours. Shockwaves were applied with either 250, 500, or 1,000 impulses onto the discs surrounded by either phosphate-buffered saline or antibiotic (rifampin alone or in combination with nafcillin). The number of viable bacteria was determined by quantitative culture after sonication. Representative samples were taken for scanning electron microscopy. Results. The application of fhESWT led to a ten-fold reduction in bacterial counts on the metal discs for all impulse numbers compared to the control (p < 0.001). Increasing the number of impulses did not further reduce bacterial counts in the absence of antibiotics (all p > 0.289). Antibiotics alone reduced the number of bacteria on the discs; however, the combined application of the fhESWT and antibiotic administration further reduced the bacterial count compared to the antibiotic treatment only (p = 0.032). Conclusion. The use of fhESWT significantly reduced the colony-forming unit (CFU) count of a S. aureus biofilm in our model independently, and in combination with antibiotics. Therefore, the supplementary application of fhESWT could be a helpful tool in the treatment of IFIs in certain cases, including infected nonunions. Cite this article: Bone Joint Res 2021;10(1):77–84


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 409 - 416
1 Mar 2009
Anders JO Mollenhauer J Beberhold A Kinne RW Venbrocks RA

The gelatin-based haemostyptic compound Spongostan was tested as a three-dimensional (3D) chondrocyte matrix in an in vitro model for autologous chondrocyte transplantation using cells harvested from bovine knees. In a control experiment of monolayer cultures, the proliferation or de-differentiation of bovine chondrocytes was either not or only marginally influenced by the presence of Spongostan (0.3 mg/ml). In monolayers and 3-D Minusheet culture chambers, the cartilage-specific differentiation markers aggrecan and type-II collagen were ubiquitously present in a cell-associated fashion and in the pericellular matrix. The Minusheet cultures usually showed a markedly higher mRNA expression than monolayer cultures irrespective of whether Spongostan had been present or not during culture. Although the de-differentiation marker type-I collagen was also present, the ratio of type-I to type-II collagen or aggrecan to type-I collagen remained higher in Minusheet 3-D cultures than in monolayer cultures irrespective of whether Spongostan had been included in or excluded from the monolayer cultures. The concentration of GAG in Minusheet cultures reached its maximum after 14 days with a mean of 0.83 ± 0.8 μg/10. 6. cells; mean ±, . sem. , but remained considerably lower than in monolayer cultures with/without Spongostan. Our results suggest that Spongostan is in principle suitable as a 3-D chondrocyte matrix, as demonstrated in Minusheet chambers, in particular for a culture period of 14 days. Clinically, differentiating effects on chondrocytes, simple handling and optimal formability may render Spongostan an attractive 3-D scaffold for autologous chondrocyte transplantation


Bone & Joint Research
Vol. 3, Issue 3 | Pages 51 - 59
1 Mar 2014
Kim HJ Braun HJ Dragoo JL

Background. Resveratrol is a polyphenolic compound commonly found in the skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated by resveratrol and has been shown to promote longevity and boost mitochondrial metabolism. We examined the effect of resveratrol on normal and osteoarthritic (OA) human chondrocytes. Methods. Normal and OA chondrocytes were incubated with various concentrations of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24, 48 or 72 hours or for six weeks. Cell proliferation, gene expression, and senescence were evaluated. Results. SIRT1 was significantly upregulated in normal chondrocytes with resveratrol concentrations of 25 µM and 50 µM on both two- (2D) (both p = 0.001) and three-dimensional (3D) cultures (p = 0.008 and 0.001, respectively). It was significantly upregulated in OA chondrocytes treated with 10 µM, 25 µM and 50 µM resveratrol on 2D cultures (p = 0.036, 0.002 and 0.001, respectively) and at 50 µM concentration on 3D cultures (p = 0.001). At 72 hours, the expression of collagen (COL)-10, aggrecan (AGG), and runt-related transcription factor 2 (RUNX2) was significantly greater in both 25 µM (p = 0.011, 0.006 and 0.015, respectively) and 50 µM (p = 0.019, 0.004 and 0.002, respectively) resveratrol-treated normal chondrocyte cultures. In OA chondrocytes, expression of COL10 and RUNX2 was significantly greater in 25 µM (p = 0.004 and 0.024) and 50 µM (p = 0.004 and 0.019) cultures at 72 hours on 3D cultures. Conclusions. At concentrations of 25 µM and/or 50 µM, resveratrol treatment significantly upregulates SIRT1 gene expression in normal and osteoarthritic chondrocytes. Resveratrol induces chondrocytes into a hypertrophic state through upregulation of COL1, COL10, and RUNX2. Cite this article: Bone Joint Res 2014;3:51–9


Bone & Joint Research
Vol. 10, Issue 1 | Pages 85 - 95
27 Jan 2021
Akhbari P Jaggard MK Boulangé CL Vaghela U Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims. The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. Methods. In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. Results. A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). Conclusion. Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid metabolism and the inflammatory response. Those found in significantly reduced concentrations were involved in carbohydrate metabolism, nucleoside metabolism, the glutamate metabolic pathway, increased oxidative stress in the diseased state, and reduced articular cartilage breakdown. This is the first study to demonstrate differences in the metabolic profile of infected and noninfected human SF, using a noninfected matched cohort, and may represent putative biomarkers that form the basis of new diagnostic tests for infected SF. Cite this article: Bone Joint Res 2021;10(1):85–95


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 3 - 9
1 Jun 2020
Yang J Parvizi J Hansen EN Culvern CN Segreti JC Tan T Hartman CW Sporer SM Della Valle CJ

Aims. The aim of this study was to determine if a three-month course of microorganism-directed oral antibiotics reduces the rate of failure due to further infection following two-stage revision for chronic prosthetic joint infection (PJI) of the hip and knee. Methods. A total of 185 patients undergoing a two-stage revision in seven different centres were prospectively enrolled. Of these patients, 93 were randomized to receive microorganism-directed oral antibiotics for three months following reimplantation; 88 were randomized to receive no antibiotics, and four were withdrawn before randomization. Of the 181 randomized patients, 28 were lost to follow-up, six died before two years follow-up, and five with culture negative infections were excluded. The remaining 142 patients were followed for a mean of 3.3 years (2.0 to 7.6) with failure due to a further infection as the primary endpoint. Patients who were treated with antibiotics were also assessed for their adherence to the medication regime and for side effects to antibiotics. Results. Nine of 72 patients (12.5%) who received antibiotics failed due to further infection compared with 20 of 70 patients (28.6%) who did not receive antibiotics (p = 0.012). Five patients (6.9%) in the treatment group experienced adverse effects related to the administered antibiotics severe enough to warrant discontinuation. Conclusion. This multicentre randomized controlled trial showed that a three-month course of microorganism-directed, oral antibiotics significantly reduced the rate of failure due to further infection following a two-stage revision of total hip or knee arthroplasty for chronic PJI. Cite this article: Bone Joint J 2020;102-B(6 Supple A):3–9


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1067 - 1072
1 Aug 2017
Booker SJ Boyd M Gallacher S Evans JP Auckland C Kitson J Thomas W Smith CD

Aims. Our aim was to investigate the prevalence of Propionibacterium (P.) acnes in the subcutaneous fat and capsule of patients undergoing shoulder surgery for frozen shoulder or instability. Patients and Methods. A total of 46 patients undergoing either an arthroscopic capsular release or stabilisation had biopsies taken from the subcutaneous fat and capsule of the shoulder at the time of surgery. These samples were sent for culture in enrichment, and also for Nucleic Acid Amplification testing. The prevalence of P. acnes and other microbes was recorded. Fisher's exact test of binary variables was used to calculate the association with significance set at p < 0.05. Assessment of influence of independent variables including a pre-operative glenohumeral injection, fat colonisation and gender, was undertaken using binary linear regression. Results. A total of 25 patients (53%) had P. acnes in one or more tissue samples and 35 (74%) had other bacterial species. The same microbe was found in the subcutaneous fat and the capsule in 13 patients (28%). There was no statistically significant association between the surgical pathology and capsular colonisation with P. acnes (p = 0.18) or mixed identified bacterial species (p = 0.77). Male gender was significantly associated with an increased capsular colonisation of P. acnes (odds ratio (OR) 12.38, 95% confidence interval (CI) 1.43 to 106.77, p = 0.02). A pre-operative glenohumeral injection was significantly associated with capsular P. acnes colonisation (OR 5.63, 95% CI 1.07 to 29.61, p = 0.04. Positive fat colonisation with P. acnes was significantly associated with capsular P. acnes (OR 363, 95% CI 20.90 to 6304.19, p < 0.01). Regression models pseudo R. 2. found fat colonisation with P. acnes to explain 70% of the variance of the model. Patients who had a pre-operative glenohumeral injection who were found intra-operatively to have fat colonisation with P. acnes had a statistically significant association with colonisation of their capsule with P. acnes (OR 165, 95% CI 13.51 to 2015.24, p < 0.01). Conclusion. These results show a statistically significant association between subcutaneous skin P. acnes culture and P. acnes capsular culture, especially when the patient has undergone a previous injection. The results refute the hypothesis that P. acnes causes frozen shoulder. Cite this article: Bone Joint J 2017;99-B:1067–72


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 11 - 19
1 Jul 2020
Shohat N Goswami K Tan TL Yayac M Soriano A Sousa R Wouthuyzen-Bakker M Parvizi J

Aims. Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors. Methods. This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The algorithm was then verified through cross-validation. Results. Of the 1,174 patients that were included in the study, 405 patients (34.5%) failed treatment. Using random forest analysis, an algorithm that provides the probability for failure for each specific patient was created. By order of importance, the ten most important variables associated with failure of I&D were serum CRP levels, positive blood cultures, indication for index arthroplasty other than osteoarthritis, not exchanging the modular components, use of immunosuppressive medication, late acute (haematogenous) infections, methicillin-resistant Staphylococcus aureus infection, overlying skin infection, polymicrobial infection, and older age. The algorithm had good discriminatory capability (area under the curve = 0.74). Cross-validation showed similar probabilities comparing predicted and observed failures indicating high accuracy of the model. Conclusion. This is the first study in the orthopaedic literature to use machine learning as a tool for predicting outcomes following I&D surgery. The developed algorithm provides the medical profession with a tool that can be employed in clinical decision-making and improve patient care. Future studies should aid in further validating this tool on additional cohorts. Cite this article: Bone Joint J 2020;102-B(7 Supple B):11–19


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 542 - 548
1 Apr 2018
Dayer R Alzahrani MM Saran N Ouellet JA Journeau P Tabard-Fougère A Martinez-Álvarez S Ceroni D

Aims. This multicentre, retrospective study aimed to improve our knowledge of primary pyogenic spinal infections in children by analyzing a large consecutive case series. Patients and Methods. The medical records of children with such an infection, treated at four tertiary institutions between 2004 and 2014, were analyzed retrospectively. Epidemiological, clinical, paraclinical, radiological, and microbiological data were evaluated. There were 103 children, of whom 79 (76.7%) were aged between six months and four years. Results. We confirmed a significant male predominance in the incidence of primary pyogenic spinal infections in children (65%). The lumbar spine was the most commonly affected region, and 27 infections (26.2%) occurred at L4/5. The white blood cell count was normal in 61 children (59%), and the CRP level was normal in 43 (42%). Blood cultures were performed in 95 children, and were positive in eight (8%). A total of 20 children underwent culture of biopsy or aspiration material, which was positive in eight (40%). Methicillin-sensitive Staphylococcus aureus (MSSA) and Kingella (K.) kingae were the most frequently isolated pathogens. Conclusion. MSSA remains the most frequently isolated pathogen in children with primary pyogenic infection of the spine, but K. kingae should be considered as an important pathogen in children aged between six months and four years. Therefore, an empirical protocol for antibiotic treatment should be used, with consideration being made for the triphasic age distribution and specific bacteriological aetiology. In the near future, the results of polymerase chain reaction assay on throat swabs may allow the indirect identification of K. kingae spondylodiscitis in young children and thus aid early treatment. However, these preliminary results require validation by other prospective multicentre studies. Cite this article: Bone Joint J 2018;100-B:542–8


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results. In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion. This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2