Advertisement for orthosearch.org.uk
Results 81 - 100 of 4633
Results per page:

Introduction. Virtual fracture clinics (VFCs) are being increasingly used to offer safe and efficient orthopaedic review without the requirement for face-to-face contact. With the onset of the COVID-19 pandemic, we sought to develop an online referral pathway that would allow us to provide definitive orthopaedic management plans and reduce face-to-face contact at the fracture clinics. Methods. All patients presenting to the emergency department from 21March 2020 with a musculoskeletal injury or potential musculoskeletal infection deemed to require orthopaedic input were discussed using a secure messaging app. A definitive management plan was communicated by an on-call senior orthopaedic decision-maker. We analyzed the time to decision, if further information was needed, and the referral outcome. An analysis of the orthopaedic referrals for the same period in 2019 was also performed as a comparison. Results. During the study period, 295 patients with mean age of 7.93 years (standard error (SE) 0.24) were reviewed. Of these, 25 (9.8%) were admitted, 17 (5.8%) were advised to return for planned surgical intervention, 105 (35.6%) were referred to a face-to-face fracture clinic, 137 (46.4%) were discharged with no follow-up, and seven (2.4%) were referred to other services. The mean time to decision was 20.14 minutes (SE 1.73). There was a significant difference in the time to decision between patients referred to fracture clinic and patients discharged (mean 25.25 minutes (SE 3.18) vs mean 2.63 (SE 1.42); p < 0.005). There were a total of 295 referrals to the fracture clinic for the same period in 2019 with a further 44 emergency admissions. There was a statistically significant difference in the weekly referrals after being triaged by the VFC (mean 59 (SE 5.15) vs mean 21 (SE 2.17); p < 0.001). Conclusion. The use of an electronic referral pathway to deliver a point of care virtual fracture clinic allowed for efficient use of scarce resources and definitive management plan delivery in a safe manner. Cite this article: Bone Joint Open 2020;1-6:293–301


Bone & Joint Open
Vol. 1, Issue 3 | Pages 41 - 46
18 Mar 2020
Perry DC Arch B Appelbe D Francis P Spowart C Knight M

Introduction. There is widespread variation in the management of rare orthopaedic disease, in a large part owing to uncertainty. No individual surgeon or hospital is typically equipped to amass sufficient numbers of cases to draw robust conclusions from the information available to them. The programme of research will establish the British Orthopaedic Surgery Surveillance (BOSS) Study; a nationwide reporting structure for rare disease in orthopaedic surgery. Methods. The BOSS Study is a series of nationwide observational cohort studies of pre-specified orthopaedic disease. All relevant hospitals treating the disease are invited to contribute anonymised case details. Data will be collected digitally through REDCap, with an additional bespoke software solution used to regularly confirm case ascertainment, prompt follow-up reminders and identify potential missing cases from external sources of information (i.e. national administrative data). With their consent, patients will be invited to enrich the data collected by supplementing anonymised case data with patient reported outcomes. The study will primarily seek to calculate the incidence of the rare diseases under investigation, with 95% confidence intervals. Descriptive statistics will be used to describe the case mix, treatment variations and outcomes. Inferential statistical analysis may be used to analyze associations between presentation factors and outcomes. Types of analyses will be contingent on the disease under investigation. Discussion. This study builds upon other national rare disease supporting structures, particularly those in obstetrics and paediatric surgery. It is particularly focused on addressing the evidence base for quality and safety of surgery, and the design is influenced by the specifications of the IDEAL collaboration for the development of surgical research


Bone & Joint Open
Vol. 1, Issue 4 | Pages 74 - 79
24 Apr 2020
Baldock TE Bolam SM Gao R Zhu MF Rosenfeldt MPJ Young SW Munro JT Monk AP

Aim. The coronavirus disease 2019 (COVID-19) pandemic presents significant challenges to healthcare systems globally. Orthopaedic surgeons are at risk of contracting COVID-19 due to their close contact with patients in both outpatient and theatre environments. The aim of this review was to perform a literature review, including articles of other coronaviruses, to formulate guidelines for orthopaedic healthcare staff. Methods. A search of Medline, EMBASE, the Cochrane Library, World Health Organization (WHO), and Centers for Disease Control and Prevention (CDC) databases was performed encompassing a variety of terms including ‘coronavirus’, ‘covid-19’, ‘orthopaedic’, ‘personal protective environment’ and ‘PPE’. Online database searches identified 354 articles. Articles were included if they studied any of the other coronaviruses or if the basic science could potentially applied to COVID-19 (i.e. use of an inactivated virus with a similar diameter to COVID-19). Two reviewers independently identified and screened articles based on the titles and abstracts. 274 were subsequently excluded, with 80 full-text articles retrieved and assessed for eligibility. Of these, 66 were excluded as they compared personal protection equipment to no personal protection equipment or referred to prevention measures in the context of bacterial infections. Results. There is a paucity of high quality evidence surrounding COVID-19. This review collates evidence from previous coronavirus outbreaks to put forward recommendations for orthopaedic surgeons during the COVID-19 pandemic. The key findings have been summarized and interpreted for application to the orthopaedic operative setting. Conclusion. For COVID-19 positive patients, minimum suggested PPE includes N95 respirator, goggles, face shield, gown, double gloves, and surgical balaclava. Space suits not advised. Be trained in the correct technique of donning and doffing PPE. Use negative pressure theatres if available. Minimize aerosolization and its effects (smoke evacuation and no pulse lavage). Minimize further unnecessary patient-staff contact (dissolvable sutures, clear dressings, split casts)


Bone & Joint Open
Vol. 1, Issue 5 | Pages 103 - 114
13 May 2020
James HK Gregory RJH Tennent D Pattison GTR Fisher JD Griffin DR

Aims. The primary aim of the survey was to map the current provision of simulation training within UK and Republic of Ireland (RoI) trauma and orthopaedic (T&O) specialist training programmes to inform future design of a simulation based-curriculum. The secondary aims were to characterize; the types of simulation offered to trainees by stage of training, the sources of funding for simulation, the barriers to providing simulation in training, and to measure current research activity assessing the educational impact of simulation. Methods. The development of the survey was a collaborative effort between the authors and the British Orthopaedic Association Simulation Group. The survey items were embedded in the Performance and Opportunity Dashboard, which annually audits quality in training across several domains on behalf of the Speciality Advisory Committee (SAC). The survey was sent via email to the 30 training programme directors in March 2019. Data were retrieved and analyzed at the Warwick Clinical Trials Unit, UK. Results. Overall, 28 of 30 programme directors completed the survey (93%). 82% of programmes had access to high-fidelity simulation facilities such as cadaveric laboratories. More than half (54%) had access to a non-technical skills simulation training. Less than half (43%) received centralized funding for simulation, a third relied on local funding such as the departmental budget, and there was a heavy reliance on industry sponsorship to partly or wholly fund simulation training (64%). Provision was higher in the mid-stages (ST3-5) compared to late-stages (ST6-8) of training, and was formally timetabled in 68% of prostgrammes. There was no assessment of the impact of simulation training using objective behavioural measures or real-world clinical outcomes. Conclusion. There is currently widespread, but variable, provision of simulation in T&O training in the UK and RoI, which is likely to expand further with the new curriculum. It is important that research activity into the impact of simulation training continues, to develop an evidence base to support investment in facilities and provision


Bone & Joint Research
Vol. 7, Issue 11 | Pages 609 - 619
1 Nov 2018
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives. Prosthetic joint infection (PJI) is a devastating complication following total joint arthroplasty. Non-contact induction heating of metal implants is a new and emerging treatment for PJI. However, there may be concerns for potential tissue necrosis. It is thought that segmental induction heating can be used to control the thermal dose and to limit collateral thermal injury to the bone and surrounding tissues. The purpose of this study was to determine the thermal dose, for commonly used metal implants in orthopaedic surgery, at various distances from the heating centre (HC). Methods. Commonly used metal orthopaedic implants (hip stem, intramedullary nail, and locking compression plate (LCP)) were heated segmentally using an induction heater. The thermal dose was expressed in cumulative equivalent minutes at 43°C (CEM43) and measured with a thermal camera at several different distances from the HC. A value of 16 CEM43 was used as the threshold for thermal damage in bone. Results. Despite high thermal doses at the HC (7161 CEM43 to 66 640 CEM43), the thermal dose at various distances from the HC was lower than 16 CEM43 for the hip stem and nail. For the fracture plate without corresponding metal screws, doses higher than 16 CEM43 were measured up to 5 mm from the HC. Conclusion. Segmental induction heating concentrates the thermal dose at the targeted metal implant areas and minimizes collateral thermal injury by using the non-heated metal as a heat sink. Implant type and geometry are important factors to consider, as they influence dissipation of heat and associated collateral thermal injury. Cite this article: B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Segmental induction heating of orthopaedic metal implants. Bone Joint Res 2018;7:609–619. DOI: 10.1302/2046-3758.711.BJR-2018-0080.R1


Bone & Joint Open
Vol. 1, Issue 6 | Pages 272 - 280
19 Jun 2020
King D Emara AK Ng MK Evans PJ Estes K Spindler KP Mroz T Patterson BM Krebs VE Pinney S Piuzzi NS Schaffer JL

Virtual encounters have experienced an exponential rise amid the current COVID-19 crisis. This abrupt change, seen in response to unprecedented medical and environmental challenges, has been forced upon the orthopaedic community. However, such changes to adopting virtual care and technology were already in the evolution forecast, albeit in an unpredictable timetable impeded by regulatory and financial barriers. This adoption is not meant to replace, but rather augment established, traditional models of care while ensuring patient/provider safety, especially during the pandemic. While our department, like those of other institutions, has performed virtual care for several years, it represented a small fraction of daily care. The pandemic required an accelerated and comprehensive approach to the new reality. Contemporary literature has already shown equivalent safety and patient satisfaction, as well as superior efficiency and reduced expenses with musculoskeletal virtual care (MSKVC) versus traditional models. Nevertheless, current literature detailing operational models of MSKVC is scarce. The current review describes our pre-pandemic MSKVC model and the shift to a MSKVC pandemic workflow that enumerates the conceptual workflow organization (patient triage, from timely care provision based on symptom acuity/severity to a continuum that includes future follow-up). Furthermore, specific setup requirements (both resource/personnel requirements such as hardware, software, and network connectivity requirements, and patient/provider characteristics respectively), and professional expectations are outlined. MSKVC has already become a pivotal element of musculoskeletal care, due to COVID-19, and these changes are confidently here to stay. Readiness to adapt and evolve will be required of individual musculoskeletal clinical teams as well as organizations, as established paradigms evolve. Cite this article: Bone Joint Open 2020;1-6:272–280


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1416 - 1423
1 Nov 2018
Rajan PV Qudsi RA Dyer GSM Losina E

Aims. The aim of this study was to assess the quality and scope of the current cost-effectiveness analysis (CEA) literature in the field of hand and upper limb orthopaedic surgery. Materials and Methods. We conducted a systematic review of MEDLINE and the CEA Registry to identify CEAs that were conducted on or after 1 January 1997, that studied a procedure pertaining to the field of hand and upper extremity surgery, that were clinical studies, and that reported outcomes in terms of quality-adjusted life-years. We identified a total of 33 studies that met our inclusion criteria. The quality of these studies was assessed using the Quality of Health Economic Analysis (QHES) scale. Results. The mean total QHES score was 82 (high-quality). Over time, a greater proportion of these studies have demonstrated poorer QHES quality (scores < 75). Lower-scoring studies demonstrated several deficits, including failures in identifying reference perspectives, incorporating comparators and sensitivity analyses, discounting costs and utilities, and disclosing funding. Conclusion. It will be important to monitor the ongoing quality of CEA studies in orthopaedics and ensure standards of reporting and comparability in accordance with Second Panel recommendations. Cite this article: Bone Joint J 2018;100-B:1416–23


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1774 - 1781
1 Dec 2020
Clement ND Hall AJ Makaram NS Robinson PG Patton RFL Moran M Macpherson GJ Duckworth AD Jenkins PJ

Aims. The primary aim of this study was to assess the independent association of the coronavirus disease 2019 (COVID-19) on postoperative mortality for patients undergoing orthopaedic and trauma surgery. The secondary aim was to identify factors that were associated with developing COVID-19 during the postoperative period. Methods. A multicentre retrospective study was conducted of all patients presenting to nine centres over a 50-day period during the COVID-19 pandemic (1 March 2020 to 19 April 2020) with a minimum of 50 days follow-up. Patient demographics, American Society of Anesthesiologists (ASA) grade, priority (urgent or elective), procedure type, COVID-19 status, and postoperative mortality were recorded. Results. During the study period, 1,659 procedures were performed in 1,569 patients. There were 68 (4.3%) patients who were diagnosed with COVID-19. There were 85 (5.4%) deaths postoperatively. Patients who had COVID-19 had a significantly lower survival rate when compared with those without a proven SARS-CoV-2 infection (67.6% vs 95.8%, p < 0.001). When adjusting for confounding variables (older age (p < 0.001), female sex (p = 0.004), hip fracture (p = 0.003), and increasing ASA grade (p < 0.001)) a diagnosis of COVID-19 was associated with an increased mortality risk (hazard ratio 1.89, 95% confidence interval (CI) 1.14 to 3.12; p = 0.014). A total of 62 patients developed COVID-19 postoperatively, of which two were in the elective and 60 were in the urgent group. Patients aged > 77 years (odds ratio (OR) 3.16; p = 0.001), with increasing ASA grade (OR 2.74; p < 0.001), sustaining a hip (OR 4.56; p = 0.008) or periprosthetic fracture (OR 14.70; p < 0.001) were more likely to develop COVID-19 postoperatively. Conclusion. Perioperative COVID-19 nearly doubled the background postoperative mortality risk following surgery. Patients at risk of developing COVID-19 postoperatively (patients > 77 years, increasing morbidity, sustaining a hip or periprosthetic fracture) may benefit from perioperative shielding. Cite this article: Bone Joint J 2020;102-B(12):1774–1781


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1270 - 1274
1 Oct 2018
Manta A Opingari E Saleh A Simunovic N Duong A Sprague S Peterson D Bhandari M

Aims. The aims of this systematic review were to describe the quantity and methodological quality of meta-analyses in orthopaedic surgery published during the last 17 years. Materials and Methods. MEDLINE, EMBASE, and PubMed, between 1 January 2000 and 31 December 2016, were searched for meta-analyses in orthopaedic surgery dealing with at least one surgical intervention. Meta-analyses were included if the interventions involved a human muscle, ligament, bone or joint. Results. A total of 392 meta-analyses met eligibility criteria, for which the mean AMSTAR quality score was 7.1/11. There was a positive correlation between the year of publication and the quality of the meta-analysis (r = 0.238, p < 0.001). Between 2000 and 2011, the mean AMSTAR score corresponded to that of a medium quality review. However, between 2012 and 2016, the mean scores have been consistently equivalent to those of a high-quality review. The number of meta-analyses published increased 10-fold between 2005 and 2014. Conclusion. The quantity and quality of meta-analyses in orthopaedic surgery which have been published has increased, reaching a plateau in 2012. Methodological flaws remain to be addressed in future meta-analyses in order to continue increasing the quality of the orthopaedic literature. Cite this article: Bone Joint J 2018;100-B:1270–4


Bone & Joint Research
Vol. 12, Issue 8 | Pages 494 - 496
9 Aug 2023
Clement ND Simpson AHRW

Cite this article: Bone Joint Res 2023;12(8):494–496.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 640 - 641
1 Jul 2024
Ashby E Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 837 - 838
1 Aug 2023
Kelly M McNally SA Dhesi JK


Bone & Joint Research
Vol. 5, Issue 6 | Pages 263 - 268
1 Jun 2016
Yan J MacDonald A Baisi L Evaniew N Bhandari M Ghert M

Objectives. Despite the fact that research fraud and misconduct are under scrutiny in the field of orthopaedic research, little systematic work has been done to uncover and characterise the underlying reasons for academic retractions in this field. The purpose of this study was to determine the rate of retractions and identify the reasons for retracted publications in the orthopaedic literature. Methods. Two reviewers independently searched MEDLINE, EMBASE, and the Cochrane Library (1995 to current) using MeSH keyword headings and the ‘retracted’ filter. We also searched an independent website that reports and archives retracted scientific publications (. www.retractionwatch.com. ). Two reviewers independently extracted data including reason for retraction, study type, journal impact factor, and country of origin. Results. One hundred and ten retracted studies were included for data extraction. The retracted studies were published in journals with impact factors ranging from 0.000 (discontinued journals) to 13.262. In the 20-year search window, only 25 papers were retracted in the first ten years, with the remaining 85 papers retracted in the most recent decade. The most common reasons for retraction were fraudulent data (29), plagiarism (25) and duplicate publication (20). Retracted articles have been cited up to 165 times (median 6; interquartile range 2 to 19). Conclusion. The rate of retractions in the orthopaedic literature is increasing, with the majority of retractions attributed to academic misconduct and fraud. Orthopaedic retractions originate from numerous journals and countries, indicating that misconduct issues are widespread. The results of this study highlight the need to address academic integrity when training the next generation of orthopaedic investigators. Cite this article: J. Yan, A. MacDonald, L-P. Baisi, N. Evaniew, M. Bhandari, M. Ghert. Retractions in orthopaedic research: A systematic review. Bone Joint Res 2016;5:263–268. DOI: 10.1302/2046-3758.56.BJR-2016-0047


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 121 - 127
1 Feb 2024
Filtes P Sobol K Lin C Anil U Roberts T Pargas-Colina C Castañeda P

Aims

Perthes' disease (PD) is a relatively rare syndrome of idiopathic osteonecrosis of the proximal femoral epiphysis. Treatment for Perthes' disease is controversial due to the many options available, with no clear superiority of one treatment over another. Despite having few evidence-based approaches, many patients with Perthes' disease are managed surgically. Positive outcome reporting, defined as reporting a study variable producing statistically significant positive (beneficial) results, is a phenomenon that can be considered a proxy for the strength of science. This study aims to conduct a systematic literature review with the hypothesis that positive outcome reporting is frequent in studies on the treatment of Perthes' disease.

Methods

We conducted a systematic review of all available abstracts associated with manuscripts in English or with English translation between January 2000 and December 2021, dealing with the treatment of Perthes' disease. Data collection included various study characteristics, surgical versus non-surgical management, treatment modality, mean follow-up time, analysis methods, and clinical recommendations.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro. Methods. Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed. Results. Using LA or GC, especially triamcinolone acetonide, a dilution of 1:100 resulted in only a moderate reduction of viability, while a dilution of 1:10 showed significantly fewer cell counts. TA and CA reduced viability significantly at a dilution of 1:2. Higher dilutions did not affect viability. Notably, HA showed no effects of cytotoxicity in all drug dilutions. Conclusion. The toxicity of common intra-articular injectable drugs, assessed by cell viability, is mainly dependent on the dilution of the drug being tested. LA are particularly toxic, whereas HA did not affect cell viability. Cite this article: P. Busse, C. Vater, M. Stiehler, J. Nowotny, P. Kasten, H. Bretschneider, S. B. Goodman, M. Gelinsky, S. Zwingenberger. Cytotoxicity of drugs injected into joints in orthopaedics. Bone Joint Res 2019;8:41–48. DOI: 10.1302/2046-3758.82.BJR-2018-0099.R1


Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2


Bone & Joint 360
Vol. 11, Issue 6 | Pages 6 - 11
1 Dec 2022
Roberton A Stocker M Phillips J


Aims. Hip fracture patients are at higher risk of severe COVID-19 illness, and admission into hospital puts them at further risk. We implemented a two-site orthopaedic trauma service, with ‘COVID’ and ‘COVID-free’ hubs, to deliver urgent and infection-controlled trauma care for hip fracture patients, while increasing bed capacity for medical patients during the COVID-19 pandemic. Methods. A vacated private elective surgical centre was repurposed to facilitate a two-site, ‘COVID’ and ‘COVID-free’, hip fracture service. Patients were screened for COVID-19 infection and either kept at our ‘COVID’ site or transferred to our ‘COVID-free’ site. We collected data for 30 days on patient demographics, Clinical Frailty Scale (CFS), Nottingham Hip Fracture Scores (NHFS), time to surgery, COVID-19 status, mortality, and length of stay (LOS). Results. In all, 47 hip fracture patients presented to our service: 12 were admitted to the ‘COVID’ site and 35 to the ‘COVID-free’ site. The ‘COVID’ site cohort were older (mean 86.8 vs 78.5 years, p = 0.0427) and with poorer CFS (p = 0.0147) and NHFS (p = 0.0023) scores. At the ‘COVID-free’ site, mean time to surgery was less (29.8 vs 52.8 hours, p = 0.0146), and mean LOS seemed shorter (8.7 vs 12.6 days, p = 0.0592). No patients tested positive for COVID-19 infection while at the ‘COVID-free’ site. We redirected 74% of our admissions from the base ‘COVID’ site and created 304 inpatient days’ capacity for medical COVID patients. Conclusion. Acquisition of unused elective orthopaedic capacity from the private sector facilitated a two-site trauma service. Patients were treated expeditiously, while successfully achieving strict infection control. We achieved significant gains in medical bed capacity in response to the COVID-19 demand. The authors propose the repurposing of unused elective operating facilities for a two-site ‘COVID’ and ‘COVID-free’ model as a safe and effective way of managing hip fracture patients during the pandemic. Cite this article: Bone Joint Open 2020;1-6:190–197


Bone & Joint Research
Vol. 13, Issue 12 | Pages 695 - 702
1 Dec 2024
Cordero García-Galán E Medel-Plaza M Pozo-Kreilinger JJ Sarnago H Lucía Ó Rico-Nieto A Esteban J Gomez-Barrena E

Aims

Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting.

Methods

Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Staphylococcus aureus biofilm. Sacrifice and sample collection were performed 24, 48, or 96 hours postoperatively. Retrieved screws were sonicated, and adhered bacteria were estimated via drop-plate. Width of bone necrosis in retrieved femora was assessed through microscopic examination. Analysis was performed using non-parametric tests with significance fixed at p ≤ 0.05.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 423 - 432
1 Jul 2017
van der Stok J Hartholt KA Schoenmakers DAL Arts JJC

Objectives. The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery. Methods. A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included. Results. The literature search resulted in 823 manuscripts of which 64 manuscripts met the final inclusion criteria. The included manuscripts consisted of four randomised controlled trials (level I), eight cohort studies (level III) and 49 case-series (level IV). No clinical studies were found for ten DBM products, and most DBM products were only used in combination with other grafting materials. DBM products were most extensively investigated in spinal surgery, showing limited level I evidence that supports the use Grafton DBM (Osteotech, Eatontown, New Jersey) as a bone graft extender in posterolateral lumbar fusion surgery. DBM products are not thoroughly investigated in trauma surgery, showing mainly level IV evidence that supports the use of Allomatrix (Wright Medical, London, United Kingdom), DBX (DePuy Synthes, Zuchwil, Switzerland), Grafton DBM, or OrthoBlast (Citagenix Laval, Canada) as bone graft extenders. Conclusions. The clinical level of evidence that supports the use of DBM in trauma and orthopaedic surgery is limited and consists mainly of poor quality and retrospective case-series. More prospective, randomised controlled trials are needed to understand the clinical effect and impact of DBM in trauma and orthopaedic surgery. Cite this article: J. van der Stok, K. A. Hartholt, D. A. L. Schoenmakers, J. J. C. Arts. The available evidence on demineralised bone matrix in trauma and orthopaedic surgery: A systemati c review. Bone Joint Res 2017;6:423–432. DOI: 10.1302/2046-3758.67.BJR-2017-0027.R1