Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained
Aims. A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely
Aims. The Exeter V40 femoral stem is the most implanted stem in the National Joint Registry (NJR) for primary total hip arthroplasty (THA). In 2004, the 44/00/125 stem was
Aims. Due to the recent rapid expansion of scooter sharing companies, there has been a dramatic increase in the number of electric scooter (e-scooter) injuries. Our purpose was to conduct a systematic review to characterize the demographic characteristics, most common injuries, and management of patients injured from electric scooters. Methods. We searched PubMed, EMBASE, Scopus, and Web of Science databases using variations of the term “electric scooter”. We excluded studies conducted prior to 2015, studies with a population of less than 50, case reports, and studies not focused on electric scooters. Data were analyzed using t-tests and p-values < 0.05 were considered significant. Results. We studied 5,705 patients from 34 studies. The mean age was 33.3 years (SD 3.5), and 58.3% (n = 3,325) were male. The leading mechanism of injury was falling (n = 3,595, 74.4%). Injured patients were more likely to not wear a helmet (n = 2,114; 68.1%; p < 0.001). The most common type of injury incurred was bony injuries (n = 2,761, 39.2%), of which upper limb fractures dominated (n = 1,236, 44.8%). Head and neck injuries composed 22.2% (n = 1,565) of the reported injuries, including traumatic brain injuries (n = 455; 2.5%), lacerations/abrasions/contusions (n = 500; 7.1%), intracerebral brain haemorrhages (n = 131; 1.9%), and concussions (n = 255; 3.2%). Standard radiographs comprised most images (n = 2,153; 57.7%). Most patients were treated and
Aims. Tourniquets have potential adverse effects including postoperative thigh pain, likely caused by their ischaemic and possible compressive effects. The aims of this preliminary study were to determine if it is possible to directly measure intramuscular pH in human subjects over time, and to measure the intramuscular pH changes resulting from tourniquet ischaemia in patients undergoing knee arthroscopy. Methods. For patients undergoing short knee arthroscopic procedures, a sterile calibrated pH probe was inserted into the anterior fascial compartment of the leg after skin preparation, but before tourniquet inflation. The limb was elevated for three minutes prior to tourniquet inflation to 250 mmHg or 300 mmHg. Intramuscular pH was recorded at one-second intervals throughout the procedure and for 20 minutes following tourniquet deflation. Probe-related adverse events were recorded. Results. A total of 27 patients were recruited to the study. Mean tourniquet time was 21 minutes (10 to 56). Tourniquet pressure was 300 mmHg for 21 patients and 250 mmHg for six patients. Mean muscle pH prior to tourniquet inflation was 6.80. Muscle pH decreased upon tourniquet inflation, with a steeper fall in the first ten minutes than for the rest of the procedure. Change in muscle pH was significant after five minutes of tourniquet ischaemia (p < 0.001). Mean muscle pH prior to tourniquet
Aims. Bacteriophages infect, replicate inside bacteria, and are
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver
Aims. Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. Methods. Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks. Results. ABG-gentamicin was bactericidal from 10 μg/ml and could
Aims. This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss. Methods. TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results. Macrophages, lymphocytes, and endothelial cells displayed strong TNF-α immunoexpression in periprosthetic tissues containing metal wear debris. Colocalization of TNF-α with the macrophage marker CD68 and the pan-T cell marker CD3 confirmed TNF-α expression in these cells. Cobalt-treated MM6 cells secreted more TNF-α than control cells, reflecting the role of metal wear products in activating the TNF-α pathway in the myeloid cells. While TNF-α did not alter the immunoexpression of the TNF-receptor 1 (TNF-R1) in SaOs-2 cells, it increased the
Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. We conducted a retrospective analysis of clinical and radiological data of 20 patients aged between 9 and 17 years old, (with a 19 female: 1 male ratio) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5 years (9 to 14) with a mean Risser classification of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) with a mean Risser classification of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40° to 58°) with a Fulcrum unbend of 17.4 (1° to 41°), compared to VBT-ASC 56.5° (40° to 79°) with 30.6 (2° to 69°)unbend. Postoperative VBT-GM was 20.3° and VBT-ASC Cobb angle was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. The last Cobb angle on radiograph at mean five years’ follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Patients with open triradiate cartilage (TRC) had three over-corrections. Overall, 5% of patients required fusion. This one patient alone had a over-correction, a second-stage tether
Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled
Aims. Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. Methods. Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. Results. Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen
Aims. A pragmatic multicentre randomized controlled trial, UK FROzen Shoulder Trial (UK FROST), was conducted in the UK NHS comparing the cost-effectiveness of commonly used treatments for adults with primary frozen shoulder in secondary care. Methods. A cost utility analysis from the NHS perspective was performed. Differences between manipulation under anaesthesia (MUA), arthroscopic capsular
Objectives. The aim of this study was to analyze drain fluid, blood, and urine simultaneously to follow the long-term
Aims. This systematic review places a recently completed multicentre randomized controlled trial (RCT), UK FROST, in the context of existing randomized evidence for the management of primary frozen shoulder. UK FROST compared the effectiveness of pre-specified physiotherapy techniques with a steroid injection (PTSI), manipulation under anaesthesia (MUA) with a steroid injection, and arthroscopic capsular
Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue
Aims. The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without
Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB
Aims. Between 15% and 20% of patients remain dissatisfied following total knee arthroplasty (TKA). The SAIPH knee system (MatOrtho, Surrey, United Kingdom) is a medial ball and socket TKA that has been designed to replicate native knee kinematics in order to maximize the range of movement, stability, and function. This system is being progressively introduced in a stepwise fashion, with this study reporting the mid-term clinical and radiological outcomes. Patients and Methods. A retrospective review was undertaken of the first 100 consecutive patients with five-year follow-up following SAIPH TKA performed by the senior authors. The data that were collected included the demographics of the patients, clinical findings, the rate of intraoperative ligamentous