Advertisement for orthosearch.org.uk
Results 81 - 100 of 2064
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 755 - 761
1 Jun 2015
Flatøy B Röhrl SM Rydinge J Dahl J Diep LM Nordsletten L

Cemented femoral stems with force closed fixation designs have shown good clinical results despite high early subsidence. A new triple-tapered stem in this category (C-stem AMT) was introduced in 2005. This study compares this new stem with an established stem of similar design (Exeter) in terms of migration (as measured using radiostereometric analysis), peri-prosthetic bone remodelling (measured using dual energy x-ray densitometry, DXA), Oxford Hip Score, and plain radiographs. . A total of 70 patients (70 hips) with a mean age of 66 years (53 to 78) were followed for two years. Owing to missing data of miscellaneous reasons, the final analysis represents data from 51 (RSA) and 65 (DXA) patients. Both stems showed a typical pattern of migration: Subsidence and retroversion that primarily occurred during the first three months. C-stem AMT subsided less during the first three months (p = 0.01), before stabilising at a subsidence rate similar to the Exeter stem from years one to two. The rate of migration into retroversion was slightly higher for C-stem AMT during the second year (p = 0.03). Whilst there were slight differences in movement patterns between the stems, the C-stem AMT exhibits good early clinical outcomes and displays a pattern of migration and bone remodelling that predicts good clinical performance. Cite this article: Bone Joint J 2015;97-B:755–61


Bone & Joint Research
Vol. 5, Issue 9 | Pages 362 - 369
1 Sep 2016
Oba M Inaba Y Kobayashi N Ike H Tezuka T Saito T

Objectives. In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. Patients and Methods. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year. Results. Stovepipe models implanted with large-size stems had significantly lower equivalent stress on the proximal-medial area of the femur compared with champagne-flute and intermediate models, with a significant loss of BMD in the corresponding area at one year post-operatively. Conclusions. The stovepipe femurs required a large-size stem to obtain an optimal fit of the stem. The FEA result and post-operative BMD change of the femur suggest that the combination of a large-size Accolade TMZF stem and stovepipe femur may be associated with proximal stress shielding. Cite this article: M. Oba, Y. Inaba, N. Kobayashi, H. Ike, T. Tezuka, T. Saito. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem. Bone Joint Res 2016;5:362–369. DOI: 10.1302/2046-3758.59.2000525


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims. Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. Methods. In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation. Results. TGF-β and bFGF were shown to significantly enhance cell proliferation. VEGF and IGF-1 supported ALP activity. Light microscopy showed initial extracellular matrix mineralization after VEGF/IGF-1 supply. Conclusion. A combination of more than two growth factors did not support the cellular metabolism level and ALP activity even though the growth factor itself had a positive effect. This is probably caused by interplay of various messengers shared by more growth factor signalling cascades. Cite this article: Bone Joint Res 2020;9(7):412–420


Bone & Joint Research
Vol. 8, Issue 10 | Pages 481 - 488
1 Oct 2019
Nathan K Lu LY Lin T Pajarinen J Jämsen E Huang J Romero-Lopez M Maruyama M Kohno Y Yao Z Goodman SB

Objectives. Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures. Methods. A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion. Results. We found that 96 hours of M1 phenotype in male cocultures allowed for maximum matrix mineralization versus 72 hours in female cocultures. ALP activity and osteocalcin secretion were also enhanced with the addition of IL-4 later in male versus female groups. The sex of the cells had a statistically significant effect on the optimal IL-4 addition time to maximize osteogenesis. Conclusion. These results suggest that: 1) a 72- to 96-hour proinflammatory environment is critical for optimal matrix mineralization; and 2) there are immunological differences in this coculture environment due to sex. Optimizing immunomodulation during fracture healing may enhance and expedite the bone regeneration response. These findings provide insight into precise immunomodulation for enhanced bone healing that is sex-specific. Cite this article: K. Nathan, L. Y. Lu, T. Lin, J. Pajarinen, E. Jämsen, J-F. Huang, M. Romero-Lopez, M. Maruyama, Y. Kohno, Z. Yao, S. B. Goodman. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res 2019;8:481–488. DOI: 10.1302/2046-3758.810.BJR-2018-0231.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1515 - 1521
1 Nov 2010
Clauss M Ilchmann T Zimmermann P Ochsner PE

The aim of this study was to obtain detailed long-term data on the cement-bone interface in patients with cemented stems, implanted using the constrained fixation technique. A total of eight stems were removed together with adjacent bone during post-mortem examinations of patients with well-functioning prostheses. Specimens were cut at four defined levels, contact radiographs were obtained for each level, and slices were prepared for histological analysis. Clinical data, clinical radiographs, contact radiographs and histological samples were examined for signs of loosening and remodelling. The mean radiological follow-up was 9.6 years and all stems were well-fixed, based on clinical and radiological criteria. Contact radiographs revealed an incomplete cement mantle but a complete filling of the medullary canal for all implants. Various amounts of polyethylene particles were evident at the cement-bone interface of seven stems, with no accompanying inflammatory reaction. Cortical atrophy and the formation of an ‘inner cortex’ were confirmed in six of eight stems by contact radiographs and histology, but were only visible on two clinical radiographs. Our results confirm that a complete cement mantle is not essential for the survival of Müller straight stems into the mid term, and support our hypothesis that no benefit to long-term survival can be expected from modern cementing techniques


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 58 - 60
1 Nov 2012
Munro JT Garbuz DS Masri BA Duncan CP

Tapered, fluted, modular, titanium stems have a long history in Europe and are increasing in popularity in North America. We have reviewed the results at our institution looking at stem survival and clinical outcomes. Radiological outcomes and quality of life assessments have been performed and compared to cylindrical non-modular cobalt chromium stems. Survival at five years was 94%. This fell to 85% at ten years due to stem breakage with older designs. Review of radiology showed maintenance or improvement of bone stock in 87% of cases. Outcome scores were superior in tapered stems despite worse pre-operative femoral deficiency. Tapered stems have proved to be a useful alternative in revision total hip arthroplasty across the spectrum of femoral bone deficiency


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1031 - 1037
1 Aug 2015
da Assunção RE Pollard TCB Hrycaiczuk A Curry J Glyn-Jones S Taylor A

Periprosthetic femoral fracture (PFF) is a potentially devastating complication after total hip arthroplasty, with historically high rates of complication and failure because of the technical challenges of surgery, as well as the prevalence of advanced age and comorbidity in the patients at risk. This study describes the short-term outcome after revision arthroplasty using a modular, titanium, tapered, conical stem for PFF in a series of 38 fractures in 37 patients. The mean age of the cohort was 77 years (47 to 96). A total of 27 patients had an American Society of Anesthesiologists grade of at least 3. At a mean follow-up of 35 months (4 to 66) the mean Oxford Hip Score (OHS) was 35 (15 to 48) and comorbidity was significantly associated with a poorer OHS. All fractures united and no stem needed to be revised. Three hips in three patients required further surgery for infection, recurrent PFF and recurrent dislocation and three other patients required closed manipulation for a single dislocation. One stem subsided more than 5 mm but then stabilised and required no further intervention. . In this series, a modular, tapered, conical stem provided a versatile reconstruction solution with a low rate of complications. Cite this article: Bone Joint J 2015;97-B:1031–7


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1347 - 1354
1 Oct 2016
Palan J Smith MC Gregg P Mellon S Kulkarni A Tucker K Blom AW Murray DW Pandit H

Aims. Periprosthetic fracture (PF) after primary total hip arthroplasty (THA) is an uncommon but potentially devastating complication. This study aims to investigate the influence of cemented stem designs on the risk of needing a revision for a PF. Patients and Methods. We analysed data on 257 202 primary THAs with cemented stems and 390 linked first revisions for PF recorded in the National Joint Registry (NJR) of England, Wales and Northern Ireland to determine if a cemented femoral stem brand was associated with the risk of having revision for a PF after primary THA. All cemented femoral stem brands with more than 10 000 primary operations recorded in the NJR were identified. The four most commonly used cemented femoral stems were the Exeter V40 (n = 146 409), CPT (n = 24 300), C-Stem (n = 15 113) and Charnley (n = 20 182). We compared the revision risk ratios due to PF amongst the stems using a Poisson regression model adjusting for patient factors. Compared with the Exeter V40, the age, gender and ASA grade adjusted revision rate ratio was 3.89 for the cemented CPT stem (95% confidence interval (CI) 3.07 to 4.93), 0.89 for the C-Stem (95% CI 0.57 to 1.41) and 0.41 for the Charnley stem (95% CI 0.24 to 0.70). Conclusions. The limitations of the study include incomplete data capture, analysis of only PF requiring revision and that observation does not imply causality. Nevertheless, this study demonstrates that the choice of a cemented stem may influence the risk of revision for PF. Cite this article: Bone Joint J 2016;98-B:1347–54


Aims. This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA). Methods. Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry. Results. Histopathological analysis showed that intra-articular injection of human UC-MSCs significantly inhibited the progression of OA, as demonstrated by reduced cartilage degradation, increased Safranin-O staining, and lower Mankin scores. Immunohistochemistry showed that human UC-MSC treatment down-regulated the expression of matrix metalloproteinase-13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and enhanced the expression of type II collagen and ki67 in the articular cartilage. Furthermore, human UC-MSCs significantly decreased the expression of interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), while increasing TNF-α-induced protein 6 and IL-1 receptor antagonist. Conclusion. Our results demonstrated that human UC-MSCs ameliorate MIA-induced OA by preventing cartilage degradation, restoring the proliferation of chondrocytes, and inhibiting the inflammatory response, which implies that human UC-MSCs may be a promising strategy for the treatment of OA. Cite this article: Bone Joint Res 2021;10(3):226–236


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1333 - 1336
1 Oct 2005
Busch CA Charles MN Haydon CM Bourne RB Rorabeck CH MacDonald SJ McCalden RW

We identified five (2.3%) fractures of the stem in a series of 219 revision procedures using a cementless, cylindrical, extensively porous-coated, distally-fixed femoral stem. Factors relating to the patients, the implant and the operations were compared with those with intact stems. Finite-element analysis was performed on two of the fractured implants. Factors associated with fracture of the stem were poor proximal bone support (type III–type IV; p = 0.001), a body mass index > 30; (p = 0.014), a smaller diameter of stem (< 13.5 mm; p = 0.007) and the use of an extended trochanteric osteotomy (ETO 4/5: p = 0.028). Finite-element analysis showed that the highest stresses on the stem occurred adjacent to the site of the fracture. The use of a strut graft wired over an extended trochanteric osteotomy in patients lacking proximal femoral cortical support decreased the stresses on the stem by 48%. We recommend the use of a strut allograft in conjunction with an extended trochanteric osteotomy in patients with poor proximal femoral bone stock


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 92 - 94
1 Nov 2013
Gehrke T Gebauer M Kendoff D

Femoral revision after cemented total hip replacement (THR) might include technical difficulties, following essential cement removal, which might lead to further loss of bone and consequently inadequate fixation of the subsequent revision stem. . Femoral impaction allografting has been widely used in revision surgery for the acetabulum, and subsequently for the femur. In combination with a primary cemented stem, impaction grafting allows for femoral bone restoration through incorporation and remodelling of the impacted morsellized bone graft by the host skeleton. Cavitary bone defects affecting meta-physis and diaphysis leading to a wide femoral shaft, are ideal indications for this technique. Cancellous allograft bone chips of 1 mm to 2 mm size are used, and tapered into the canal with rods of increasing diameters. To impact the bone chips into the femoral canal a prosthesis dummy of the same dimensions of the definitive cemented stem is driven into the femur to ensure that the chips are very firmly impacted. Finally, a standard stem is cemented into the neo-medullary canal using bone cement. . To date several studies have shown favourable results with this technique, with some excellent long-term results reported in independent clinical centres worldwide. Cite this article: Bone Joint J 2013;95-B, Supple A:92–4


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims. Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. Methods. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI. Results. We confirmed an interaction between miR-381 and BRD4, and showed that miR-381 overexpression inhibited the expression of BRD4 in DRG cells as well as the apoptosis of DRG cells through WNT5A via activation of Ras homologous A (RhoA)/Rho-kinase activity. Moreover, treatment of MSC-EVs rescued neuron apoptosis and promoted the recovery of SCI through inhibition of the BRD4/WNT5A axis. Conclusion. Taken altogether, miR-381 derived from MSC-EVs can promote the recovery of SCI through BRD4/WNT5A axis, providing a new perspective on SCI treatment. Cite this article: Bone Joint Res 2021;10(5):328–339


Bone & Joint 360
Vol. 2, Issue 1 | Pages 2 - 5
1 Feb 2013
Khan M Roberts S Richardson JB McCaskie A

Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1011 - 1021
1 Aug 2013
Krishnan H Krishnan SP Blunn G Skinner JA Hart AJ

Following the recall of modular neck hip stems in July 2012, research into femoral modularity will intensify over the next few years. This review aims to provide surgeons with an up-to-date summary of the clinically relevant evidence. The development of femoral modularity, and a classification system, is described. The theoretical rationale for modularity is summarised and the clinical outcomes are explored. The review also examines the clinically relevant problems reported following the use of femoral stems with a modular neck. Joint replacement registries in the United Kingdom and Australia have provided data on the failure rates of modular devices but cannot identify the mechanism of failure. This information is needed to determine whether modular neck femoral stems will be used in the future, and how we should monitor patients who already have them implanted. Cite this article: Bone Joint J 2013;95-B:1011–21


Objectives. Osteoporosis is a systemic bone metabolic disease, which often occurs among the elderly. Angelica polysaccharide (AP) is the main component of angelica sinensis, and is widely used for treating various diseases. However, the effects of AP on osteoporosis have not been investigated. This study aimed to uncover the functions of AP in mesenchymal stem cell (MSC) proliferation and osteoblast differentiation. Methods. MSCs were treated with different concentrations of AP, and then cell viability, Cyclin D1 protein level, and the osteogenic markers of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2) were examined by Cell Counting Kit-8 (CCK-8) and western blot assays, respectively. The effect of AP on the main signalling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin was determined by western blot. Following this, si-H19#1 and si-H19#2 were transfected into MSCs, and the effects of H19 on cell proliferation and osteoblast differentiation in MSCs were studied. Finally, in vivo experimentation explored bone mineral density, bone mineral content, and the ash weight and dry weight of femoral bone. Results. The results revealed that AP significantly promoted cell viability, upregulated cyclin D1 and increased RUNX2, OCN, ALP, and BMP-2 protein levels in MSCs. Moreover, we found that AP notably activated PI3K/AKT and Wnt/β-catenin signalling pathways in MSCs. Additionally, the relative expression level of H19 was upregulated by AP in a dose-dependent manner. The promoting effects of AP on cell proliferation and osteoblast differentiation were reversed by H19 knockdown. Moreover, in vivo experimentation further confirmed the promoting effect of AP on bone formation. Conclusion. These data indicate that AP could promote MSC proliferation and osteoblast differentiation by regulating H19. Cite this article: X. Xie, M. Liu, Q. Meng. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19: An animal study. Bone Joint Res 2019;8:323–332. DOI: 10.1302/2046-3758.87.BJR-2018-0223.R2


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 50 - 53
1 Jan 2016
Konan S Garbuz DS Masri BA Duncan CP

Tapered fluted titanium stems are increasingly used for femoral revision arthroplasty. They are available in modular and non-modular forms. Modularity has advantages when the bone loss is severe, the proximal femur is mis shapen or the surgeon is unfamiliar with the implant, but it introduces the risk of fracture of the stem at the junction between it and the proximal body segment. For that reason, and while awaiting intermediate-term results of more recently introduced designs of this junction, non-modularity has attracted attention, at least for straightforward revision cases. . We review the risks and causes of fracture of tapered titanium modular revision stems and present an argument in favour of the more selective use of modular designs. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):50–3


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological mechanisms provide improved understanding of the biomembrane’s osteogenic potential and molecular properties. Cite this article: Dr H. E. Gruber. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–115. DOI: 10.1302/2046-3758.54.2000483


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 928 - 933
1 Jul 2005
Berli BJ Schäfer D Morscher EW

The Morscher-Spotorno (MS-30) femoral stem is a stainless-steel, straight, three-dimensionally tapered, collarless implant for cemented fixation in total hip replacement. We report the results at ten years of a consecutive series of 124 total hip replacements in 121 patients with the matt-surfaced MS-30 stem and an alumina ceramic head of 28-mm diameter. All the stems were fixed with Palacos bone cement with gentamicin using a modern cementing technique. They were combined with an uncemented, press-fit cup. The mean period of observation was 10.2 years (8.3 to 12.1) and no patient was lost to follow-up. Twenty-seven patients (22%) died with the implant in situ. Nine could only be interviewed by telephone. We included 85 patients with 88 hips in the clinical and radiological follow-up examinations. None of the stems or cups had been revised. The Harris hip score was excellent or good in 97% (85 hips) and moderate in 3% (three hips). Radiologically, six hips (6.8%) had osteolysis adjacent to the stem, mostly in Gruen zone 7. Twenty (22.7%) showed one or more radiolucent lines. Twenty-two stems (25%) had subsided by 2 mm to 5 mm. In these cases two showed osteolysis (9.1%) with subsidence and four without (6.1%). Radiolucent lines were seen in seven with migration (31.8%) and in 13 without (19.7%). No infections and no acetabular osteolysis were observed. The clinical results were excellent with survivorship after ten years of 100% and only a slightly statistically non-significant higher rate of osteolysis and radiolucency in cases of subsidence


The Bone & Joint Journal
Vol. 101-B, Issue 6 | Pages 724 - 731
1 Jun 2019
Bernthal NM Upfill-Brown A Burke ZDC Ishmael CR Hsiue P Hori K Hornicek F Eckardt JJ

Aims. Aseptic loosening is a major cause of failure in cemented endoprosthetic reconstructions. This paper presents the long-term outcomes of a custom-designed cross-pin fixation construct designed to minimize rotational stress and subsequent aseptic loosening in selected patients. The paper will also examine the long-term survivorship and modes of failure when using this technique. Patients and Methods. A review of 658 consecutive, prospectively collected cemented endoprosthetic reconstructions for oncological diagnoses at a single centre between 1980 and 2017 was performed. A total of 51 patients were identified with 56 endoprosthetic implants with cross-pin fixation, 21 of which were implanted following primary resection of tumour. Locations included distal femoral (n = 36), proximal femoral (n = 7), intercalary (n = 6), proximal humeral (n = 3), proximal tibial (n = 3), and distal humeral (n = 1). Results. The median follow-up was 132 months (interquartile range (IQR) 44 to 189). In all, 20 stems required revision: eight for infection, five for structural failure, five for aseptic loosening, and two for tumour progression. Mechanical survivorship at five, ten, and 15 years was 84%, 78%, and 78%, respectively. Mechanical failure rate varied by location, with no mechanical failures of proximal femoral constructs and distal femoral survivorship of 82%, 77%, and 77% at five, ten, and 15 years. The survivorship of primary constructs at five years was 74%, with no failure after 40 months, while the survivorship for revision constructs was 89%, 80%, and 80% at five, ten, and 15 years. . Conclusion. The rate of mechanical survivorship in our series is similar to those reported for other methods of reconstruction for short diaphyseal segments, such as compressive osseointegration. The mechanical failure rate differed by location, while there was no substantial difference in long-term survival between primary and revision reconstructions. Overall, custom cross-pin fixation is a viable option for endoprosthetic reconstruction of short metaphyseal segments with an acceptable rate of mechanical failure. Cite this article: Bone Joint J 2019;101-B:724–731


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing. Materials and Methods. Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses. Results. While SEC2 was found to have no effect on rat MSCs proliferation, it promoted the osteoblast differentiation of rat MSCs. In the rat femoral fracture model, the local administration of SEC2 accelerated fracture healing by increasing fracture callus volumes, bone volume over total volume (BV/TV), and biomechanical recovery. The SEC2 treatment group has superior histological appearance compared with the control group. Conclusion. These data suggest that local administration of SEC2 may be a novel therapeutic approach to enhancing bone repair such as fracture healing. Cite this article: T. Wu, J. Zhang, B. Wang, Y. Sun, Y. Liu, G. Li. Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing. Bone Joint Res 2018;7:179–186. DOI: 10.1302/2046-3758.72.BJR-2017-0229.R1