Advertisement for orthosearch.org.uk
Results 81 - 100 of 335
Results per page:
Bone & Joint Research
Vol. 11, Issue 7 | Pages 426 - 438
20 Jul 2022
Luo P Wang P Xu J Hou W Xu P Xu K Liu L

Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps.

Cite this article: Bone Joint Res 2022;11(7):426–438.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 241 - 248
1 Feb 2012
Firoozabadi R McDonald E Nguyen T Buckley JM Kandemir U

Filling the empty holes in peri-articular locking plates may improve the fatigue strength of the fixation. The purpose of this in vitro study was to investigate the effect of plugging the unused holes on the fatigue life of peri-articular distal femoral plates used to fix a comminuted supracondylar fracture model. A locking/compression plate was applied to 33 synthetic femurs and then a 6 cm metaphyseal defect was created (AO Type 33-A3). The specimens were then divided into three groups: unplugged, plugged with locking screw only and fully plugged holes. They were then tested using a stepwise or run-out fatigue protocol, each applying cyclic physiological multiaxial loads. All specimens in the stepwise group failed at the 770 N load level. The mean number of cycles to failure for the stepwise specimen was 25 500 cycles (. sd. 1500), 28 800 cycles (. sd.  6300), and 26 400 cycles (. sd. 2300) cycles for the unplugged, screw only and fully plugged configurations, respectively (p = 0.16). The mean number of cycles to failure for the run-out specimens was 42 800 cycles (. sd. 10 700), 36 000 cycles (. sd. 7200), and 36 600 cycles (. sd.  10 000) for the unplugged, screw only and fully plugged configurations, respectively (p = 0.50). There were also no differences in axial or torsional stiffness between the constructs. The failures were through the screw holes at the level of comminution. In conclusion, filling the empty combination locking/compression holes in peri-articular distal femur locking plates at the level of supracondylar comminution does not increase the fatigue life of the fixation in a comminuted supracondylar femoral fracture model (AO 33-A3) with a 6 cm gap


Bone & Joint Open
Vol. 3, Issue 6 | Pages 455 - 462
6 Jun 2022
Nwankwo H Mason J Costa ML Parsons N Redmond A Parsons H Haque A Kearney RS

Aims

To compare the cost-utility of removable brace compared with cast in the management of adult patients with ankle fracture.

Methods

A within-trial economic evaluation conducted from the UK NHS and personnel social services (PSS) perspective. Health resources and quality-of-life data were collected as part of the Ankle Injury Rehabilitation (AIR) multicentre, randomized controlled trial over a 12-month period using trial case report forms and patient-completed questionnaires. Cost-utility analysis was estimated in terms of the incremental cost per quality adjusted life year (QALY) gained. Estimate uncertainty was explored by bootstrapping, visualized on the incremental cost-effectiveness ratio plane. Net monetary benefit and probability of cost-effectiveness were evaluated at a range of willingness-to-pay thresholds and visualized graphically.


Bone & Joint 360
Vol. 11, Issue 3 | Pages 29 - 32
1 Jun 2022


Bone & Joint Research
Vol. 11, Issue 6 | Pages 349 - 361
9 Jun 2022
Jun Z Yuping W Yanran H Ziming L Yuwan L Xizhong Z Zhilin W Xiaoji L

Aims

The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects.

Methods

HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 91 - 96
1 Jan 2022
Modi A Haque A Deore V Singh HP Pandey R

Aims

Long-term outcomes following the use of human dermal allografts in the treatment of symptomatic irreparable rotator cuff tears are not known. The aim of this study was to evaluate these outcomes, and to investigate whether this would be a good form of treatment in young patients in whom a reverse shoulder arthroplasty should ideally be avoided.

Methods

This prospective study included 47 shoulders in 45 patients who underwent an open reconstruction of the rotator cuff using an interposition GraftJacket allograft to bridge irreparable cuff tears, between January 2007 and November 2011. The Oxford Shoulder Score (OSS), pain score, and range of motion (ROM) were recorded preoperatively and at one year and a mean of 9.1 years (7.0 to 12.5) postoperatively.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2022;11(5):292–300.


Bone & Joint 360
Vol. 11, Issue 2 | Pages 31 - 34
1 Apr 2022


Bone & Joint 360
Vol. 10, Issue 6 | Pages 29 - 32
1 Dec 2021


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1619 - 1626
1 Oct 2021
Bi M Zhou K Gan K Ding W Zhang T Ding S Li J

Aims

The aim of this study is to provide a detailed description of cases combining bridging patch repair with artificial ligament “internal brace” reinforcement to treat irreparable massive rotator cuff tears, and report the preliminary results.

Methods

This is a retrospective review of patients with irreparable massive rotator cuff tears undergoing fascia lata autograft bridging repair with artificial ligament “internal brace” reinforcement technique between January 2017 and May 2018. Inclusion criteria were: patients treated arthroscopically for an incompletely reparable massive rotator cuff tear (dimension > 5 cm or two tendons fully torn), stage 0 to 4 supraspinatus fatty degeneration on MRI according to the Goutallier grading system, and an intact or reparable infraspinatus and/or subscapularis tendon of radiological classification Hamada 0 to 4. The surgical technique comprised two components: first, superior capsular reconstruction using an artificial ligament as an “internal brace” protective device for a fascia lata patch. The second was fascia lata autograft bridging repair for the torn supraspinatus. In all, 26 patients with a mean age 63.4 years (SD 6.2) were included.


Bone & Joint Open
Vol. 3, Issue 4 | Pages 291 - 301
4 Apr 2022
Holleyman RJ Lyman S Bankes MJK Board TN Conroy JL McBryde CW Andrade AJ Malviya A Khanduja V

Aims

This study uses prospective registry data to compare early patient outcomes following arthroscopic repair or debridement of the acetabular labrum.

Methods

Data on adult patients who underwent arthroscopic labral debridement or repair between 1 January 2012 and 31 July 2019 were extracted from the UK Non-Arthroplasty Hip Registry. Patients who underwent microfracture, osteophyte excision, or a concurrent extra-articular procedure were excluded. The EuroQol five-dimension (EQ-5D) and International Hip Outcome Tool 12 (iHOT-12) questionnaires were collected preoperatively and at six and 12 months post-operatively. Due to concerns over differential questionnaire non-response between the two groups, a combination of random sampling, propensity score matching, and pooled multivariable linear regression models were employed to compare iHOT-12 improvement.


Bone & Joint 360
Vol. 11, Issue 1 | Pages 24 - 27
1 Feb 2022


Bone & Joint Research
Vol. 10, Issue 4 | Pages 285 - 297
1 Apr 2021
Ji M Ryu HJ Hong JH

Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA.

Cite this article: Bone Joint Res 2021;10(4):285–297.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 939 - 945
1 May 2021
Kakar S Logli AL Ramazanian T Gaston RG Fowler JR

Aims

The purpose was to evaluate early clinical, patient-reported, and radiological outcomes of the scapholunate ligament 360° tenodesis (SL 360) technique for treatment of scapholunate (SL) instability.

Methods

We studied the results of nine patients (eight males and one female with a mean age of 44.7 years (26 to 55)) who underwent the SL 360 procedure for reducible SL instability between January 2016 and June 2019, and who were identified from retrospective review of electronic medical records. Final follow-up of any kind was a mean of 33.7 months (12.0 to 51.3). Clinical, radiological, and patient-reported outcome data included visual analogue scale (VAS) for pain, Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH), Mayo Wrist Score (MWS), and Patient-Rated Wrist Examination (PRWE). Means were analyzed using paired t-test.


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims

Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA.

Methods

OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot.


Bone & Joint 360
Vol. 10, Issue 5 | Pages 35 - 37
1 Oct 2021


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1611 - 1618
1 Oct 2021
Kavarthapu V Budair B

Aims

In our unit, we adopt a two-stage surgical reconstruction approach using internal fixation for the management of infected Charcot foot deformity. We evaluate our experience with this functional limb salvage method.

Methods

We conducted a retrospective analysis of prospectively collected data of all patients with infected Charcot foot deformity who underwent two-stage reconstruction with internal fixation between July 2011 and November 2019, with a minimum of 12 months’ follow-up.


Bone & Joint 360
Vol. 10, Issue 4 | Pages 17 - 20
1 Aug 2021