Advertisement for orthosearch.org.uk
Results 81 - 100 of 270
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 49-B, Issue 2 | Pages 314 - 323
1 May 1967
Klenerman L Ockenden BG Townsend AC

1. Two girls with non-familial osteogenesis imperfecta who subsequently developed osteosarcoma of the femur are described. One is of special interest in that there were multiple bone metastases. 2. It is suggested that the tumours arose spontaneously and were not related to the underlying bone disorder. 3. Because of the relative frequency of hyperplastic callus formation in osteogenesis imperfecta it is most important that adequate biopsy material of any suspicious lesion is examined because the early clinical picture may be indistinguishable from a tumour


Bone & Joint Research
Vol. 11, Issue 7 | Pages 439 - 452
13 Jul 2022
Sun Q Li G Liu D Xie W Xiao W Li Y Cai M

Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain.

Cite this article: Bone Joint Res 2022;11(7):439–452.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 477 - 480
1 May 1996
Daly K Wisbeach A Sanpera I Fixsen JA

We report a postal survey of 59 families of children with osteogenesis imperfecta. From the 51 replies we collected data on developmental milestones and walking ability and related them to the Sillence and the Shapiro classifications of osteogenesis imperfecta. Twenty-four of the patients had been treated by intramedullary rodding. Both classifications helped to predict eventual walking ability. We found that independent sitting by the age of ten months was a predictor for the use of walking as the main means of mobility with 76% attaining this. Of the patients who did not achieve sitting by ten months, walking became the main means of mobility in only 18%. The developmental pattern of mobility was similar in the rodded and non-rodded patients


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 1 | Pages 111 - 115
1 Feb 1978
Salama R Weissman S

The beneficial effect upon osteogenesis of imprenating bone grafts with autologous red marrow is well documented. The experimental findings reported in a previous paper suggested that prepared xenograft bone might provide a good medium for osteogenesis by marrow cells. This paper is a preliminary report of the first clinical attempt to use xenografts of bone combined with autologous red marrow. Kiel bone, which was found the most suitable, was impregnated with marrow aspirated from the iliac crest and, apart from one case of infection, gave excellent results in twenty-eight patients under conditions covering a wide range of indications for bone grafting. Further trials should allow a more valid assessment


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims

There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN).

Methods

The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites.


The Journal of Bone & Joint Surgery British Volume
Vol. 62-B, Issue 4 | Pages 417 - 427
1 Nov 1980
Smith R

Six patients are described with idiopathic osteoporosis which began between the ages of 4 and 16 years. In four children the disorder was mild with pain in the back, vertebral collapse, qualitatively normal iliac bone biopsies, variable calcium balance and spontaneous recovery. The two remaining patients had progressive bone disease with deformity. One with a previously normal skeleton developed changes similar to those of osteogenesis imperfecta; in the other patient, who rapidly developed structural collapse associated with severe metaphysial osteoporosis, treatment was ineffective and the histological appearances of the bone suggested osteoblastic failure. Quantitative bone histology in four patients showed no evidence of excessive active resorption; and the ratio of Type III to Type I collagen in the skin was normal, in contrast to the findings in osteogenesis imperfecta. The significance of this study in relation to previous accounts is reviewed


The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 2 | Pages 331 - 339
1 May 1974
Elves MW Salama R

1. The humoral immune response of rats against sheep iliac bone grafts has been examined. 2. Fresh, marrow-containing grafts elicited a brisk and sustained antibody response. Attempts to wash out the marrow were not uniformly successful in removing cellular antigens from the grafts. 3. Decalcifying and freezing bone grafts at —20 degrees Celsius do not impair immunogenicity to any significant extent. Immunogenicity was found to be reduced in grafts subjected to freeze-drying. 4. Deproteinised Oswestry bone grafts and Kiel grafts gave rise to antibody production in a few recipients, and in the case of the former this response did not occur until after six or seven weeks from grafting. 5. The highest degree of osteogenesis in composite bone xenograft-autografts was found by Salama and colleagues (1973) to occur in Oswestry bone grafts. It is suggested that osteogenesis in xenografts may be impaired by an immune response


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological mechanisms provide improved understanding of the biomembrane’s osteogenic potential and molecular properties. Cite this article: Dr H. E. Gruber. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–115. DOI: 10.1302/2046-3758.54.2000483


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 1 | Pages 72 - 89
1 Feb 1971
King JD Bobechko WP

1. Osteogenesis imperfecta is characterised by osseous fragility. Patients with the "congenita" form have multiple fractures before birth; those with the "tarda" form have osteoporosis, and develop multiple fractures and milder deformities of long bones at varying times after birth. 2. The frequency of blue sclera, dentinogenesis imperfecta, bruising, ligamentous laxity, and deafness are recorded in sixty patients seen at the Hospital for Sick Children, Toronto, from 1949 to 1969. The major orthopaedic deformities of long bones were antero-lateral bowing of femur and anterior bowing (sabre shin) of tibia. 3. The incidence of scoliosis (40 per cent) is high in osteogenesis imperfecta. Two patients, one in Toronto and one in Seattle, have had Harrington instrumentation and fusion for this. 4. Fractures were commonest in the femur and tibia and few in the cervical spine and femoral neck. There were four cases of disturbing hyperplastic callus formation. 5. Twenty-one patients were operated on for long bone deformities and recurrent fractures by the Sofield technique. Despite extensive subperiosteal dissection non-union is rare (four cases). Fourteen of twenty-one patients so treated are able to walk, with or without assistance. Surgical intervention to both correct and prevent deformities is justified. 6. Patients with osteogenesis imperfecta compensated for their disability by reasonable academic achievement and by choosing a sedentary occupation


Bone & Joint Research
Vol. 11, Issue 6 | Pages 409 - 412
22 Jun 2022
Tsang SJ Ferreira N Simpson AHRW


The Journal of Bone & Joint Surgery British Volume
Vol. 44-B, Issue 1 | Pages 165 - 193
1 Feb 1962
Makin M

1. In the experiments undertaken autogenous vesical mucosal transplants were made in guinea-pigs. The transplanted mucosa proliferates and forms a nodule. Central necrosis of the nodule and the secretion of the proliferating epithelium combine to form a cyst filled with a viscous fluid. 2. Before the cyst is well defined some of this fluid diffuses into the sub-epithelial connective tissue, producing areas of tissue oedema which later are transformed into translucent hyaloid islands. With further condensation of the collagen fibres, these areas are converted into primitive bone. The hyaloid islands act as a bone precursor. Bone always formed in the wall of the cyst within thirty days except in cases of sepsis or death of the transplant, when there was no osteogenesis. Homografts of vesical mucosa were found unreliable in their capacity to induce bone. 3. The results of the histochemical investigation and radiographic diffraction of the hyaloid areas suggest that the proliferating mucosa is the source of the inducing agent. 4. Bone can be induced only in sites where a primitive vascular connective tissue is growing and where there exists an adequate blood supply. 5. The rapid rate of osteogenesis can be seen in the radiographs of induced bone in radial defects. The electron-microscopic study of the induced bone at three weeks confirmed that osteoid had been formed so quickly that calcification had not yet taken place. 6. The relationship between the bone induced by transplanting vesical epithelium and the formation of urinary calculi is discussed and their common origin postulated


The Journal of Bone & Joint Surgery British Volume
Vol. 35-B, Issue 3 | Pages 411 - 416
1 Aug 1953
Hilton G

In osteogenesis imperfecta the formation of callus is usually plentiful and sometimes rather excessive but the excess is absorbed in the normal way as consolidation occurs. In hyperplastic callus formation the amount of callus formed is large, or even enormous; and, once its limits are defined and ossification has occurred, some part of the original swelling remains as a thickening of the bone. "Callus" may form with or without injury and with or without fracture. The interest of the present case lies partly in the fact that there is no history of multiple fractures to indicate classical osteogenesis imperfecta, and partly in the familial incidence which has also been noted in other records. It is important to recognise the true nature of the condition in order to avoid the tragedy of unnecessary amputation. In one of Brailsford's cases the lesion is said to have become malignant but there is no other evidence in the literature that the condition has any relationship to malignancy. The clinical appearance can easily give rise to the suspicion of malignancy, and on histological examination the highly cellular and rapidly growing callus can be confused with a malignant condition. In fact, for the short time in which the bone formation runs riot the behaviour of a malignant neoplasm is closely simulated. It is thought that the present account may be of interest because of the invariable relief of pain after x-ray treatment of each new lesion, the length of time over which the case has been followed and the resemblance between the radiographic appearances in the patient now and those of her aunt taken twenty years ago


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims

To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction.

Methods

In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1394 - 1400
1 Oct 2006
Eid K Labler L Ertel W Trentz O Keel M

Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects. The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% vs 19.1%, p = 0.031). Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1482 - 1487
1 Nov 2007
Gupta A

We describe a series of 20 patients with ununited fractures of the femoral neck following neglected trauma or failed primary internal fixation who were seen at a mean of 7.5 months (2 to 18) following injury. Open reduction and internal fixation of the fracture was performed in all patients, together with a myoperiosteal flap on the quadratus femoris muscle pedicle. Union occurred at a mean of 4.9 months (2 to 10) in all patients. The mean follow-up was for 70 months (14 to 144). There was no further progression in six of seven patients with pre-operative radiological evidence of osteonecrosis of the femoral head. One patient had delayed collapse and flattening of the femoral head ten years after union of the fracture, but remained asymptomatic. This study demonstrates the orthopaedic application of myoperiosteal grafting for inducing osteogenesis in a difficult clinical situation


Bone & Joint Research
Vol. 11, Issue 4 | Pages 189 - 199
13 Apr 2022
Yang Y Li Y Pan Q Bai S Wang H Pan X Ling K Li G

Aims

Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model.

Methods

A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 388 - 400
8 Jul 2021
Dall’Ava L Hothi H Henckel J Di Laura A Tirabosco R Eskelinen A Skinner J Hart A

Aims

The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants.

Methods

We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method.


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 3 | Pages 532 - 566
1 Aug 1966
Burwell RG

1. The present study is an attempt to analyse and apportion significance to the role of inductive mechanisms in bone transplantation. 2. The experimental model used in the present work is that of the composite homograftautograft of cancellous bone previously described (Burwell 1964a). 3. Iliac bone was removed from hooded rats and washed free from its marrow. The bone was then treated by various physical and chemical methods (some of which have been used by other workers to prepare bank bone), namely freezing (-20 degrees Centigrade, -79 degrees Centigrade, -196 degrees Centigrade); freeze-drying (without sterilisation, sterilisation with high energy radiation, sterilisation with ß-propiolactone); decalcification (with E.D.T.A.); irradiation (in the frozen state at a dose of 4 million rads); boiling in water; immersion in merthiolate solution; extraction of organic components with ethylenediamine: and calcining at 660 degrees Centigrade. The treated bone was then impregnated with fresh autologous marrow procured from the femoral shaft of the Wistar rat into which the treated composite graft was to be implanted. The grafts were inserted intramuscularly and removed for study after two, six and twelve weeks. 4. After fixation, serial sectioning and staining, each graft was examined microscopically, and the proportion of new bone/grafted bone scored using an arbitrary scale (0-4). The mean score (and the standard error of the mean score) was then plotted for each treated composite graft and also for several types of fresh cancellous bone grafts. 5. It was found (Fig. 2) that the various treated composite grafts formed a spectrum of bone-forming capacities–the maximum scores being attained by the frozen and freeze-dried composite grafts, the lowest scores by the "deproteinised" composite grafts. 6. The reasons for these differences are discussed. It is concluded that cancellous bone, after transplantation, has the property to induce and promote osteogenesis in marrow; moreover, that this property is contained in the organic components of bone. 7. From the standpoint of inductive mechanisms, cancellous bone treated by freezing or freeze-drying seems to be the most suitable devitalised bone for grafting purposes; bone which has been boiled or merthiolated less suitable; and "deproteinised" bone the least suitable. 8. Freeze-dried bone sterilised physically (by high energy radiation) or chemically (by ß-propiolactone) did not form significantly less new bone than did freeze-dried bone which had not been sterilised. 9. Remodelling mechanisms in bone transplantation are briefly discussed and attention drawn to the deficiencies of present knowledge. The quantitative studies of other workers have indicated that freeze-dried bone may be more rapidly remodelled than is frozen bone. 10. The importance of fresh red marrow in promoting osteogenesis in bone transplantation and in the healing of certain fractures, is emphasised. It seems likely that the interrelationship of bone and marrow revealed by experiment has wider significance not only in health and in response to injury but also in causation of certain idiopathic bone disorders


Aims

Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones.

Methods

Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed.