We studied prospectively the long-term results of the Charnley Elite-Plus femoral stem in 184 consecutive young patients (194 hips). There were 130 men and 54 women with a mean age of 49.1 years (21 to 60). The predominant diagnosis was osteonecrosis of the femoral head (63.6%, 117 patients). Clinical and radiological evaluation was undertaken at each follow-up. The mean follow-up was 11.2 years (10 to 12). The mean pre-operative Harris hip score was 43.4 (12 to 49) which improved to 91 (59 to 100) at the final follow-up. The survival of the femoral stem at 12 years was 99% with revision as the end-point. The mean annual linear wear of the polyethylene liner was 0.17 mm (0.13 to 0.22). The prevalence of acetabular osteolysis was 10.8% (21 hips) and osteolysis of the calcar femorale 12.9% (25 hips). A third-generation cementing technique, accurate alignment of the stem and the use of a 22 mm zirconia head were important factors in the prevention of aseptic loosening of the Elite Plus femoral stem in these high-risk young patients.
Bone allografts can be used in any kind of surgery involving bone from minor defects to major bone loss after tumour resection. This review describes the various types of bone grafts and the current knowledge on bone allografts, from procurement and preparation to implantation. The surgical conditions for optimising the incorporation of bone are outlined, and surgeon expectations from a bone allograft discussed.
We report our early experience with the use of a non-invasive distal femoral expandable endoprosthesis in seven skeletally immature patients with osteosarcoma of the distal femur. The patients had a mean age of 12.1 years (9 to 15) at the time of surgery. The prosthesis was lengthened at appropriate intervals in outpatient clinics, without anaesthesia, using the principle of electromagnetic induction. The patients were functionally evaluated using the Musculoskeletal Tumour Society scoring system. The mean follow-up was 20.2 months (14 to 30). The prostheses were lengthened by a mean of 25 mm (4.25 to 55) and maintained a mean knee flexion of 110° (100° to 120°). The mean Musculoskeletal Tumour Society score was 68% (11 to 29). Complications developed in two patients; one developed a flexion deformity of 25° at the knee joint, which was subsequently overcome and one died of disseminated disease. The early results from patients treated with this device have been encouraging. The implant avoids multiple surgical procedures, general anaesthesia and assists in maintaining leg-length equality.
The options for treatment of the young active patient with isolated symptomatic osteoarthritis of the medial compartment and pre-existing deficiency of the anterior cruciate ligament are limited. The potential longevity of the implant and levels of activity of the patient may preclude total knee replacement, and tibial osteotomy and unicompartmental knee arthroplasty are unreliable because of the ligamentous instability. Unicompartmental knee arthroplasties tend to fail because of wear or tibial loosening resulting from eccentric loading. Therefore, we combined reconstruction of the anterior cruciate ligament with unicompartmental arthroplasty of the knee in 15 patients (ACLR group), and matched them with 15 patients who had undergone Oxford unicompartmental knee arthroplasty with an intact anterior cruciate ligament (ACLI group). The clinical and radiological data at a minimum of 2.5 years were compared for both groups. The groups were well matched for age, gender and length of follow-up and had no significant differences in their pre-operative scores. At the last follow-up, the mean outcome scores for both the ACLR and ACLI groups were high (Oxford knee scores of 46 (37 to 48) and 43 (38 to 46), respectively, objective Knee Society scores of 99 (95 to 100) and 94 (82 to 100), and functional Knee Society scores of 96 and 96 (both 85 to 100). One patient in the ACLR group needed revision to a total knee replacement because of infection. No patient in either group had radiological evidence of component loosening. The radiological study showed no difference in the pattern of tibial loading between the groups. The short-term clinical results of combined anterior cruciate ligament reconstruction and unicompartmental knee arthroplasty are excellent. The previous shortcomings of unicompartmental knee arthroplasty in the presence of deficiency of the anterior cruciate ligament appear to have been addressed with the combined procedure. This operation seems to be a viable treatment option for young active patients with symptomatic arthritis of the medial compartment, in whom the anterior cruciate ligament has been ruptured.
The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.
We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p <
0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors.
A modular layered acetabular component (metal-polyethylene-ceramic) was developed in Japan for use in alumina ceramic-on-ceramic total hip replacement. Between May 1999 and July 2000, we performed 35 alumina ceramic-on-ceramic total hip replacements in 30 consecutive patients, using this layered component and evaluated the clinical and radiological results over a mean follow-up of 5.8 years (5 to 6.5). A total of six hips underwent revision, one for infection, two for dislocation with loosening of the acetabular component, two for alumina liner fractures and one for component dissociation with pelvic osteolysis. There were no fractures of the ceramic heads, and no loosening of the femoral or acetabular component in the unrevised hips was seen at final follow-up. Osteolysis was not observed in any of the unrevised hips. The survivorship analysis at six years after surgery was 83%. The layered acetabular component in our experience, has poor durability because of unexpected mechanical failures including alumina liner fracture and component dissociation.
The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.
We compared the biological characteristics of extrinsic fibroblasts infiltrating the patellar tendon with those of normal, intrinsic fibroblasts in the normal tendon Proliferation and invasive migration into the patellar tendon was significantly slower for infiltrative fibroblasts than for normal tendon fibroblasts. Flow-cytometric analysis indicated that expression of α5β1 integrin at the cell surface was significantly lower in infiltrative fibroblasts than in normal tendon fibroblasts. The findings suggest that cellular proliferation and invasive migration of fibroblasts into the patellar tendon after necrosis are inferior to those of the normal fibroblasts. The inferior intrinsic properties of infiltrative fibroblasts may contribute to a slow remodelling process in the grafted tendon after ligament reconstruction.
We investigated the rate of polyethylene wear of a cementless acetabular component at different periods of follow-up in order to test the hypothesis than an irrecoverable deformation process (creep) was followed by an initially low, but gradually increasing wear rate. We studied prospectively 93 uncemented total hip arthroplasties in 83 patients (mean age 50 years (22 to 63)) with a mean follow-up of 8.2 years (3 to 12). We measured the penetration of the femoral head from radiographs taken immediately after surgery at three, six and nine years, or at the latest follow-up. The median wear rate was 0.17 mm per year in the first three years, a finding which we considered to be caused by creep. Thereafter, the rate of wear declined to 0.07 mm per year (four- to six-year period) and then increased to 0.17 mm per year (seven to nine years) and 0.27 mm per year (more than nine years), which we considered to be a reflection of genuine polyethylene wear. After the nine-year follow-up the wear rates were higher in patients with marked osteolysis. We found no relationship between the inclination angle of the acetabular component or femoral head orientation and the rate of wear. No acetabular component required revision.
We have investigated Approximately 50% of the FGF-2 was released from the sealant within 24 hours while its original bioactivity was maintained. The implantation of the fibrin sealant incorporating FGF-2 successfully induced healing of the surface with hyaline cartilage and concomitant repair of the subchondral bone at eight weeks after the creation of the defect. Our findings suggest that this delivery method for FGF-2 may be useful for promoting regenerative repair of full-thickness defects of articular cartilage in humans.
Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p >
0.05), yet material properties were inferior (p <
0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.
Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p <
0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment.
We have carried out in 24 patients, a two-stage revision arthroplasty of the hip for infection with massive bone loss. We used a custom-made, antibiotic-loaded cement prosthesis as an interim spacer. Fifteen patients had acetabular deficiencies, eight had segmental femoral bone loss and one had a combined defect. There was no recurrence of infection at a mean follow-up of 4.2 years (2 to 7). A total of 21 patients remained mobile in the interim period. The mean Merle D’Aubigné and Postel hip score improved from 7.3 points before operation to 13.2 between stages and to 15.8 at the final follow-up. The allograft appeared to have incorporated into the host bone in all patients. Complications included two fractures and one dislocation of the cement prosthesis. The use of a temporary spacer maintains the function of the joint between stages even when there is extensive loss of bone. Allograft used in revision surgery after septic conditions restores bone stock without the risk of recurrent infection.
Peri-prosthetic bone loss caused by stress shielding may be associated with aseptic loosening of femoral components. In order to increase primary stability and to reduce stress shielding, a three-dimensional, cementless individual femoral (Evolution K) component was manufactured using pre-operative CT scans. Using dual energy x-ray absorptiometry, peri-prosthetic bone density was measured in 43 patients, three months, six months, 3.6 and 4.6 years after surgery. At final follow-up there was a significant reduction in mean bone density in the proximal Gruen zones of −30.3% (zone 7) and −22.8% (zone 1). The density in the other zones declined by a mean of between −4% and −16%. We conclude that the manufacture of a three-dimensional, custom-made femoral component could not prevent a reduction in peri-prosthetic bone density.
We have investigated the role of the penetration of saline on the shear strength of the cement-stem interface for stems inserted at room temperature and those preheated to 37°C using a variety of commercial bone cements. Immersion in saline for two weeks at 37°C reduced interfacial strength by 56% to 88% after insertion at room temperature and by 28% to 49% after preheating of the stem. The reduction in porosity as a result of preheating ranged from 71% to 100%. Increased porosity correlated with a reduction in shear strength after immersion in saline (r = 0.839, p <
0.01) indicating that interfacial porosity may act as a fluid conduit.
Despite worldwide clinical use of bio-absorbable devices for internal fixation in orthopaedic surgery, the degradation behaviour and tissue replacement of these implants are not fully understood. In a long-term experimental study, we have determined the patterns of tissue restoration 36 and 54 months after implantation of polyglycolic acid and poly-laevo-lactic acid screws in the distal femur of the rabbit. After 36 months in the polyglycolic acid group the specimens showed no remaining polymer and loose connective tissue occupied 80% of the screw track. Tissue restoration remained poor at 54 months, the amounts of trabecular bone and haematopoietic elements being significantly lower than those in the intact control group. The amount of trabecular bone within the screw track at 54 months in the polyglycolic acid group was less than in the empty drill holes (p = 0.04). In the poly-laevo-lactic acid group, polymeric material was present in abundance after 54 months, occupying 60% of the cross-section of the core area of the screw track. When using absorbable internal fixation implants we should recognise that the degradation of the devices will probably not be accompanied by the restoration of normal trabecular bone.
We inserted an electrode up the femoral neck into the femoral head of ten patients undergoing a metal-on-metal hip resurfacing arthroplasty through a posterior surgical approach and measured the oxygen concentration during the operation. In every patient the blood flow was compromised during surgery, but the extent varied. In three patients, the oxygen concentration was zero at the end of the procedure. The surgical approach caused a mean 60% drop (p <
0.005) in oxygen concentration while component insertion led to a further 20% drop (p <
0.04). The oxygen concentration did not improve significantly on wound closure. This study demonstrates that during hip resurfacing arthroplasty, patients experience some compromise to their femoral head blood supply and some have complete disruption.
The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation. We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement. Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.