The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
The mucopolysaccharidoses (MPS) are a group of
inherited lysosomal storage disorders with clinical manifestations relevant
to the orthopaedic surgeon. Our aim was to review the recent advances
in their management and the implications for surgical practice. The current literature about MPSs is summarised, emphasising
orthopaedic complications and their management. Recent advances in the diagnosis and management of MPSs include
the recognition of slowly progressive, late presenting subtypes,
developments in life-prolonging systemic treatment and potentially
new indications for surgical treatment. The outcomes of surgery
in these patients are not yet validated and some procedures have
a high rate of complications which differ from those in patients
who do not have a MPS. The diagnosis of a MPS should be considered in adolescents or
young adults with a previously unrecognised dysplasia of the hip.
Surgeons treating patients with a MPS should report their experience
and studies should include the assessment of function and quality
of life to guide treatment. Cite this article:
Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.Objectives
Methods
Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay.Objectives
Methods
Neuropathic changes in the foot are common with
a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy
is often delayed in diabetic patients with harmful consequences
including amputation. The appropriate diagnosis and treatment can
avoid an extensive programme of treatment with significant morbidity
for the patient, high costs and delayed surgery. The pathogenesis
of a Charcot foot involves repetitive micro-trauma in a foot with impaired
sensation and neurovascular changes caused by pathological innervation
of the blood vessels. In most cases, changes are due to a combination
of both pathophysiological factors. The Charcot foot is triggered
by a combination of mechanical, vascular and biological factors
which can lead to late diagnosis and incorrect treatment and eventually
to destruction of the foot. This review aims to raise awareness of the diagnosis of the Charcot
foot (diabetic neuropathic osteoarthropathy and the differential
diagnosis, erysipelas, peripheral arterial occlusive disease) and
describe the ways in which the diagnosis may be made. The clinical
diagnostic pathways based on different classifications are presented. Cite this article:
Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed.Objectives
Methods
Compartment syndrome results from increased intra-compartmental
pressure (ICP) causing local tissue ischaemia and cell death, but
the systemic effects are not well described. We hypothesised that
compartment syndrome would have a profound effect not only on the affected
limb, but also on remote organs. Using a rat model of compartment syndrome, its systemic effects
on the viability of hepatocytes and on inflammation and circulation
were directly visualised using intravital video microscopy.Aims
Methods
Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1.Objectives
Materials and Methods
To review the current best surgical practice and detail a multi-disciplinary
approach that could further reduce joint replacement infection. Review of relevant literature indexed in PubMed.Objectives
Methods
Prophylactic antibiotics can decrease the risk
of wound infection and have been routinely employed in orthopaedic surgery
for decades. Despite their widespread use, questions still surround
the selection of antibiotics for prophylaxis, timing and duration
of administration. The health economic costs associated with wound
infections are significant, and the judicious but appropriate use
of antibiotics can reduce this risk. This review examines the evidence behind commonly debated topics
in antibiotic prophylaxis and highlights the uses and advantages
of some commonly used antibiotics. Cite this article:
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure.
External fixation is widely used in orthopaedic
and trauma surgery. Infections around pin or wire sites, which are usually
localised, non-invasive, and are easily managed, are common. Occasionally,
more serious invasive complications such as necrotising fasciitis
(NF) and toxic shock syndrome (TSS) may occur. We retrospectively reviewed all patients who underwent external
fixation between 1997 and 2012 in our limb lengthening and reconstruction
programme. A total of eight patients (seven female and one male)
with a mean age of 20 years (5 to 45) in which pin/wire track infections
became limb- or life-threatening were identified. Of these, four
were due to TSS and four to NF. Their management is described. A
satisfactory outcome was obtained with early diagnosis and aggressive
medical and surgical treatment. Clinicians caring for patients who have external fixation and
in whom infection has developed should be aware of the possibility
of these more serious complications. Early diagnosis and aggressive
treatment are required in order to obtain a satisfactory outcome. Cite this article:
Technological advances and shorter rescue times have allowed early and effective resuscitation after trauma and brought attention to the host response to injury. Trauma patients are at risk of progressive organ dysfunction from what appears to be an uncontrolled immune response. The availability of improved techniques of molecular diagnosis has allowed investigation of the role of genetic variations in the inflammatory response to post-traumatic complications and particularly to sepsis. This review examines the current evidence for the genetic predisposition to adverse outcome after trauma. While there is evidence supporting the involvement of different polymorphic variants of genes in determining the post-traumatic course and the development of complications, larger-scale studies are needed to improve the understanding of how genetic variability influences the responses to post-traumatic complications and pharmacotherapy.
Effects of insulin-like growth factor 1 (IGF1), fibroblast growth
factor 2 (FGF2) and bone morphogenetic protein 2 (BMP2) on the expression
of genes involved in the proliferation and differentiation of osteoblasts
in culture were analysed. The best sequence of growth factor addition
that induces expansion of cells before their differentiation was
sought. Primary human osteoblasts in Objectives
Methods
Back pain is a common symptom in children and
adolescents. Here we review the important causes, of which defects
and stress reactions of the pars interarticularis are the most common
identifiable problems. More serious pathology, including malignancy
and infection, needs to be excluded when there is associated systemic
illness. Clinical evaluation and management may be difficult and
always requires a thorough history and physical examination. Diagnostic
imaging is obtained when symptoms are persistent or severe. Imaging
is used to reassure the patient, relatives and carers, and to guide
management. Cite this article:
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
We reviewed the literature on the currently available
choices of bearing surface in total hip replacement (THR). We present
a detailed description of the properties of articulating surfaces
review the understanding of the advantages and disadvantages of
existing bearing couples. Recent technological developments in the
field of polyethylene and ceramics have altered the risk of fracture
and the rate of wear, although the use of metal-on-metal bearings has
largely fallen out of favour, owing to concerns about reactions
to metal debris. As expected, all bearing surface combinations have
advantages and disadvantages. A patient-based approach is recommended,
balancing the risks of different options against an individual’s
functional demands. Cite this article:
A 70-year-old man with an uncemented metal-on-polyethylene
total hip prosthesis underwent revision arthroplasty 33 months later
because of pain, swelling and recurrent dislocation. There appeared
to be corrosion and metal release from the prosthetic head, resulting
in pseudotumour formation and severe local soft-tissue destruction.
The corrosion occurred at the junction between the titanium-molybdenum-zirconium-iron
taper and the cobalt-chrome-molybdenum head, but the mechanism was unproven.
Septicaemia resulting from meningococcal infection is a devastating illness affecting children. Those who survive can develop late orthopaedic sequelae from growth plate arrests, with resultant complex deformities. Our aim in this study was to review the case histories of a series of patients with late orthopaedic sequelae, all treated by the senior author (CFB). We also describe a treatment strategy to address the multiple deformities that may occur in these patients. Between 1997 and 2009, ten patients (seven girls and three boys) were treated for late orthopaedic sequelae following meningococcal septicaemia. All had involvement of the lower limbs, and one also had involvement of the upper limbs. Each patient had a median of three operations (one to nine). Methods of treatment included a combination of angular deformity correction, limb lengthening and epiphysiodesis. All patients were skeletally mature at the final follow-up. One patient with bilateral below-knee amputations had satisfactory correction of her right amputation stump deformity, and has complete ablation of both her proximal tibial growth plates. In eight patients length discrepancy in the lower limb was corrected to within 1 cm, with normalisation of the mechanical axis of the lower limb. Meningococcal septicaemia can lead to late orthopaedic sequelae due to growth plate arrests. Central growth plate arrests lead to limb-length discrepancy and the need for lengthening procedures, and peripheral growth plate arrests lead to angular deformities requiring corrective osteotomies and ablation of the damaged physis. In addition, limb amputations may be necessary and there may be altered growth of the stump requiring further surgery. Long-term follow-up of these patients is essential to recognise and treat any recurrence of deformity.
Low bone mass and osteopenia have been described in the axial and peripheral skeleton of patients with adolescent idiopathic scoliosis (AIS). Recently, many studies have shown that gene polymorphism is related to osteoporosis. However, no studies have linked the association between IL6 gene polymorphism and bone mass in AIS. This study examined the association between bone mass and IL6 gene polymorphism in 198 girls with AIS. The polymorphisms of IL6-597 G→A, IL6-572 G→C and IL6-174 G→A and the bone mineral density in the lumbar spine and femoral neck were analysed and compared with their levels in healthy controls. The mean bone mineral density at both sites in patients with AIS was decreased compared with controls (p = 0.0022 and p = 0.0013, respectively). Comparison of genotype frequencies between AIS and healthy controls revealed a statistically significant difference in IL6-572 G→C polymorphism (p = 0.0305). There was a significant association between the IL6-572 G→C polymorphism and bone mineral density in the lumbar spine, with the CC genotype significantly higher with the GC (p = 0.0124) or GG (p = 0.0066) genotypes. These results suggest that the IL6-572 G→C polymorphism is associated with bone mineral density in the lumbar spine in Korean girls with AIS.