The amount of anteroposterior laxity required for a good range of movement and knee function in a cruciate-retaining total knee replacement (TKR) continues to be debated. We undertook a retrospective study to evaluate the effects of anteroposterior laxity on the range of movement and knee function in 55 patients following the e-motion cruciate-retaining TKR with a minimum follow-up of two years. The knees were divided into stable (anteroposterior translation, ≤ 10 mm, 38 patients) and unstable (anteroposterior translation, >
10 mm, 17) groups based on the anteroposterior laxity, measured using stress radiographs. We compared the Hospital for Special Surgery (HSS) scores, the Western Ontario MacMasters University Osteoarthritis (WOMAC) index, weight-bearing flexion, non-weight-bearing flexion and the reduction of flexion under weight-bearing There were no differences between the stable and unstable groups with regard to the mean HHS and WOMAC total scores, as well as weight-bearing and non-weight-bearing flexion (p = 0.277, p = 0.082, p = 0.095 and p = 0.646, respectively). However, the stable group had a better WOMAC function score and less delta flexion than the unstable group (p = 0.011 and p = 0.005, respectively). Our results suggest that stable knees with laxity ≤ 10 mm have a good functional outcome and less reduction of flexion under weight-bearing conditions than unstable knees with laxity >
10 mm following an e-motion cruciate-retaining TKR.
We have updated our previous randomised controlled trial comparing release of chromium (Cr) and cobalt (Co) ions and included levels of titanium (Ti) ions. We have compared the findings from 28 mm metal-on-metal total hip replacement, performed using titanium CLS/Spotorno femoral components and titanium AlloFit acetabular components with Metasul bearings, with Durom hip resurfacing using a Metasul articulation or bearing and a titanium plasma-sprayed coating for fixation of the acetabular component. Although significantly higher blood ion levels of Cr and Co were observed at three months in the resurfaced group than in total hip replacement, no significant difference was found at two years post-operatively for Cr, 1.58 μg/L and 1.62 μg/L respectively (p = 0.819) and for Co, 0.67 μg/L and 0.94 μg/L respectively (p = 0.207). A steady state was reached at one year in the resurfaced group and after three months in the total hip replacement group. Interestingly, Ti, which is not part of the bearing surfaces with its release resulting from metal corrosion, had significantly elevated ion levels after implantation in both groups. The hip resurfacing group had significantly higher Ti levels than the total hip replacement group for all periods of follow-up. At two years the mean blood levels of Ti ions were 1.87 μg/L in hip resurfacing and and 1.30 μg/L in total hip replacement (p = 0.001). The study confirms even with different bearing diameters and clearances, hip replacement and 28 mm metal-on-metal total hip replacement produced similar Cr and Co metal ion levels in this randomised controlled trial study design, but apart from wear on bearing surfaces, passive corrosion of exposed metallic surfaces is a factor which influences ion concentrations. Ti plasma spray coating the acetabular components for hip resurfacing produces significantly higher release of Ti than Ti grit-blasted surfaces in total hip replacement.
We evaluated the concentrations of chromium and cobalt ions in blood after metal-on-metal surface replacement arthroplasty using a wrought-forged, high carbon content chromium-cobalt alloy implant in 64 patients. At one year, mean whole blood ion levels were 1.61 μg/L (0.4 to 5.5) for chromium and 0.67 μg/L (0.23 to 2.09) for cobalt. The pre-operative ion levels, component size, female gender and the inclination of the acetabular component were inversely proportional to the values of chromium and/or cobalt ions at one year postoperatively. Other factors, such as age and level of activity, did not correlate with the levels of metal ions. We found that the levels of the ions in the serum were 1.39 and 1.37 times higher for chromium and cobalt respectively than those in the whole blood. The levels of metal ions obtained may be specific to the hip resurfacing implant and reflect its manufacturing process.
The issues surrounding raised levels of metal
ions in the blood following large head metal-on-metal total hip replacement
(THR), such as cobalt and chromium, have been well documented. Despite
the national popularity of uncemented metal-on-polyethylene (MoP)
THR using a large-diameter femoral head, few papers have reported
the levels of metal ions in the blood following this combination.
Following an isolated failure of a 44 mm Trident–Accolade uncemented
THR associated with severe wear between the femoral head and the
trunnion in the presence of markedly elevated levels of cobalt ions
in the blood, we investigated the relationship between modular femoral head
diameter and the levels of cobalt and chromium ions in the blood
following this THR. A total of 69 patients received an uncemented Trident–Accolade
MoP THR in 2009. Of these, 43 patients (23 men and 20 women, mean
age 67.0 years) were recruited and had levels of cobalt and chromium
ions in the blood measured between May and June 2012. The patients
were then divided into three groups according to the diameter of
the femoral head used: 12 patients in the 28 mm group (controls),
18 patients in the 36 mm group and 13 patients in the 40 mm group.
A total of four patients had identical bilateral prostheses in situ
at phlebotomy: one each in the 28 mm and 36 mm groups and two in
the 40 mm group. There was a significant increase in the mean levels of cobalt
ions in the blood in those with a 36 mm diameter femoral head compared
with those with a 28 mm diameter head (p = 0.013). The levels of
cobalt ions in the blood were raised in those with a 40 mm diameter
head but there was no statistically significant difference between
this group and the control group (p = 0.152). The levels of chromium
ions in the blood were normal in all patients. The clinical significance of this finding is unclear, but we
have stopped using femoral heads with a diameter of ≤ 36 mm, and
await further larger studies to clarify whether, for instance, this
issue particularly affects this combination of components. Cite this article:
To confirm whether developmental dysplasia of
the hip has a risk of hip impingement, we analysed maximum ranges
of movement to the point of bony impingement, and impingement location
using three-dimensional (3D) surface models of the pelvis and femur
in combination with 3D morphology of the hip joint using computer-assisted methods.
Results of computed tomography were examined for 52 hip joints with
DDH and 73 normal healthy hip joints. DDH shows larger maximum extension
(p = 0.001) and internal rotation at 90° flexion (p <
0.001).
Similar maximum flexion (p = 0.835) and external rotation (p = 0.713)
were observed between groups, while high rates of extra-articular
impingement were noticed in these directions in DDH (p <
0.001).
Smaller cranial acetabular anteversion (p = 0.048), centre-edge
angles (p <
0.001), a circumferentially shallower acetabulum,
larger femoral neck anteversion (p <
0.001), and larger alpha
angle were identified in DDH. Risk of anterior impingement in retroverted
DDH hips is similar to that in retroverted normal hips in excessive
adduction but minimal in less adduction. These findings might be
borne in mind when considering the possibility of extra-articular
posterior impingement in DDH being a source of pain, particularly
for patients with a highly anteverted femoral neck. Cite this article:
In 20 patients undergoing hybrid total hip arthroplasty, the reproducibility and accuracy of templating using digital radiographs were assessed. Digital images were manipulated using either a ten-pence coin as a marker to scale for magnification, or two digital-line methods using computer software. On-screen images were templated with standard acetate templates and compared with templating performed on hard-copy digital prints. The digital-line methods were the least reliable and accuracy of sizing compared with the inserted prostheses varied between −1.6% and +10.2%. The hard-copy radiographs showed better reproducibility than the ten-pence coin method, but were less accurate with 3.7% undersizing. The ten-pence coin method was the most accurate, with no significant differences for offset or acetabulum, and undersizing of only 0.9%. On-screen templating of digital radiographs with standard acetate templates is accurate and reproducible if a radiopaque marker such as a ten-pence coin is included when the original radiograph is taken.
Large-head metal-on-metal total hip replacement has a failure rate of almost 8% at five years, three times the revision rate of conventional hip replacement. Unexplained pain remains a feature of this type of arthroplasty. All designs of the femoral component of large-head metal-on-metal total hip replacements share a unique characteristic: a subtended angle of 120° defining the proportion of a sphere that the head represents. Using MRI, we measured the contact area of the iliopsoas tendon on the femoral head in sagittal reconstruction of 20 hips of patients with symptomatic femoroacetabular impingement. We also measured the articular extent of the femoral head on 40 normal hips and ten with cam-type deformities. Finally, we performed virtual hip resurfacing on normal and cam-type hips, avoiding overhang of the metal rim inferomedially. The articular surface of the femoral head has a subtended angle of 120° anteriorly and posteriorly, but only 100° medially. Virtual surgery in a normally shaped femoral head showed a 20° skirt of metal protruding medially where iliopsoas articulates. The excessive extent of the large-diameter femoral components may cause iliopsoas impingement independently of the acetabular component. This may be the cause of postoperative pain with these implants.
Femoroacetabular impingement (FAI) causes pain
and chondrolabral damage via mechanical overload during movement
of the hip. It is caused by many different types of pathoanatomy,
including the cam ‘bump’, decreased head–neck offset, acetabular
retroversion, global acetabular overcoverage, prominent anterior–inferior
iliac spine, slipped capital femoral epiphysis, and the sequelae
of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence
studies show that anatomic variations that cause FAI are common
in the asymptomatic population. Young athletes may be predisposed
to FAI because of the stress on the physis during development. Other
factors, including the soft tissues, may also influence symptoms and
chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated
arthroscopically. Although the results are favourable, morphologies
can be complex, patient expectations are high and the surgery is
challenging. The long-term outcomes of hip arthroscopy are still
forthcoming and it is unknown if treatment of FAI will prevent arthrosis.
We compared the five- to seven-year clinical and radiological results of the metal-on-metal Birmingham hip resurfacing with a hybrid total hip arthroplasty in two groups of 54 hips, matched for gender, age, body mass index and activity level. Function was excellent in both groups, as measured by the Oxford hip score, but the Birmingham hip resurfacings had higher University of California at Los Angeles activity scores and better EuroQol quality of life scores. The total hip arthroplasties had a revision or intention-to-revise rate of 8%, and the Birmingham hip resurfacings of 6%. Both groups demonstrated impending failure on surrogate end-points. Of the total hip arthroplasties, 12% had polyethylene wear and osteolysis under observation, and 8% of Birmingham hip resurfacings showed migration of the femoral component. Polyethylene wear was present in 48% of the hybrid hips without osteolysis. Of the femoral components in the Birmingham hip resurfacing group which had not migrated, 66% had radiological changes of unknown significance.
The term developmental dysplasia of the hip (DDH)
describes a spectrum of disorders that results in abnormal development
of the hip joint. If not treated successfully in childhood, these
patients may go on to develop hip symptoms and/or secondary osteoarthritis
in adulthood. In this review we describe the altered anatomy encountered
in adults with DDH along with the management options, and the challenges
associated with hip arthroscopy, osteotomies and arthroplasty for
the treatment of DDH in young adults. Cite this article:
Slipped capital femoral epiphysis (SCFE) is relatively
common in adolescents and results in a complex deformity of the
hip that can lead to femoroacetabular impingement (FAI). FAI may
be symptomatic and lead to the premature development of osteoarthritis
(OA) of the hip. Current techniques for managing the deformity include
arthroscopic femoral neck osteochondroplasty, an arthroscopically
assisted limited anterior approach to the hip, surgical dislocation,
and proximal femoral osteotomy. Although not a routine procedure
to treat FAI secondary to SCFE deformity, peri-acetabular osteotomy
has been successfully used to treat FAI caused by acetabular over-coverage. These
procedures should be considered for patients with symptoms due to
a deformity of the hip secondary to SCFE. Cite this article:
We have reviewed 42 patients who had revision of metal-on-metal resurfacing procedures, mostly because of problems with the acetabular component. The revisions were carried out a mean of 26.2 months (1 to 76) after the initial operation and most of the patients (30) were female. Malpositioning of the acetabular component resulted in 27 revisions, mostly because of excessive abduction (mean 69.9°; 56° to 98°) or insufficient or excessive anteversion. Seven patients had more than one reason for revision. The mean increase in the diameter of the component was 1.8 mm (0 to 4) when exchange was needed. Malpositioning of the components was associated with metallosis and a high level of serum ions. The results of revision of the femoral component to a component with a modular head were excellent, but four patients had dislocation after revision and four required a further revision.
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.
The August 2012 Hip &
Pelvis Roundup360 looks at: whether cemented hip replacement might be bad for your health; highly cross-linked polyethylene; iHOT-33 - a new hip outcome measure; hamstring injuries; total hip replacement; stemmed metal-on-metal THR; bipolar hemiarthroplasty, neuromuscular disease and dislocation; the high risk of secondary hemiarthroplasty; and whether we have to repair the labrum after all?
The popularity of cementless total hip replacement
(THR) has surpassed cemented THR in England and Wales. This retrospective
cohort study records survival time to revision following primary
cementless THR with the most common combination (accounting for
almost a third of all cementless THRs), and explores risk factors independently
associated with failure, using data from the National Joint Registry
for England and Wales. Patients with osteoarthritis who had a DePuy
Corail/Pinnacle THR implanted between the establishment of the registry
in 2003 and 31 December 2010 were included within analyses. There
were 35 386 procedures. Cox proportional hazard models were used
to analyse the extent to which the risk of revision was related
to patient, surgeon and implant covariates. The overall rate of
revision at five years was 2.4% (99% confidence interval 2.02 to
2.79). In the final adjusted model, we found that the risk of revision
was significantly higher in patients receiving metal-on-metal (MoM:
hazard ratio (HR) 1.93, p <
0.001) and ceramic-on-ceramic bearings
(CoC: HR 1.55, p = 0.003) compared with the best performing bearing
(metal-on-polyethylene). The risk of revision was also greater for
smaller femoral stems (sizes 8 to 10: HR 1.82, p <
0.001) compared
with mid-range sizes. In a secondary analysis of only patients where body
mass index (BMI) data were available (n = 17 166), BMI ≥ 30 kg/m2 significantly
increased the risk of revision (HR 1.55, p = 0.002). The influence
of the bearing on the risk of revision remained significant (MoM:
HR 2.19, p <
0.001; CoC: HR 2.09,
p = 0.001). The risk of revision was independent of age, gender,
head size and offset, shell, liner and stem type, and surgeon characteristics. We found significant differences in failure between bearing surfaces
and femoral stem size after adjustment for a range of covariates
in a large cohort of single-brand cementless THRs. In this study
of procedures performed since 2003, hard bearings had significantly
higher rates of revision, but we found no evidence that head size
had an effect. Patient characteristics, such as BMI and American
Society of Anesthesiologists grade, also influence the survival
of cementless components. Cite this article:
Progressive retroversion of a cemented stem is
predictive of early loosening and failure. We assessed the relationship
between direct post-operative stem anteversion, measured with CT,
and the resulting rotational stability, measured with repeated radiostereometric
analysis over ten years. The study comprised 60 cemented total hip
replacements using one of two types of matt collared stem with a
rounded cross-section. The patients were divided into three groups
depending on their measured post-operative anteversion (<
10°,
10° to 25°, >
25°). There was a strong correlation between direct
post-operative anteversion and later posterior rotation. At one
year the <
10° group showed significantly more progressive retroversion
together with distal migration, and this persisted to the ten-year
follow-up. In the <
10° group four of ten stems (40%) had been
revised at ten years, and an additional two stems (20%) were radiologically
loose. In the ‘normal’ (10° to 25°) anteversion group there was
one revised (3%) and one loose stem (3%) of a total of 30 stems,
and in the >
25° group one stem (5%) was revised and another loose (5%)
out of 20 stems. This poor outcome is partly dependent on the design
of this prosthesis, but the results strongly suggest that the initial
rotational position of cemented stems during surgery affects the
subsequent progressive retroversion, subsidence and eventual loosening.
The degree of retroversion may be sensitive to prosthetic design
and stem size, but <
10° of anteversion appears deleterious to
the long-term outcome for cemented hip prosthetic stems. Cite this article:
We describe the results of 81 consecutive revision
total hip replacements with impaction grafting in 79 patients using
a collared polished chrome–cobalt stem, customised in length according
to the extent of distal bone loss. Our hypothesis was that the features
of this stem would reduce the rate of femoral fracture and subsidence
of the stem. The mean follow-up was 12 years (8 to 15). No intra-operative
fracture or significant subsidence occurred. Only one patient suffered
a post-operative diaphyseal fracture, which was associated with
a fall. All but one femur showed incorporation of the graft. No
revision for aseptic loosening was recorded. The rate of survival of the femoral component at 12 years, using
further femoral revision as the endpoint, was 100% (95% confidence
interval (CI) 95.9 to 100), and at nine years using re-operation
for any reason as the endpoint, was 94.6% (95% CI 92.0 to 97.2). These results suggest that a customised cemented polished stem
individually adapted to the extent of bone loss and with a collar
may reduce subsidence and the rate of fracture while maintaining
the durability of the fixation.
In this prospective study a total of 80 consecutive
Chinese patients with Crowe type I or II developmental dysplasia of
the hip were randomly assigned for hip resurfacing arthroplasty
(HRA) or total hip replacement (THR). Three patients assigned to HRA were converted to THR, and three
HRA patients and two THR patients were lost to follow-up. This left
a total of 34 patients (37 hips) who underwent HRA and 38 (39 hips)
who underwent THR. The mean follow-up was 59.4 months (52 to 70)
in the HRA group and 60.6 months (50 to 72) in the THR group. There was
no failure of the prosthesis in either group. Flexion of the hip
was significantly better after HRA, but there was no difference
in the mean post-operative Harris hip scores between the groups.
The mean size of the acetabular component in the HRA group was significantly
larger than in the THR group (49.5 mm vs 46.1 mm, p = 0.001). There was
no difference in the mean abduction angle of the acetabular component
between the two groups. Although the patients in this series had risk factors for failure
after HRA, such as low body weight, small femoral heads and dysplasia,
the clinical results of resurfacing in those with Crowe type I or
II hip dysplasia were satisfactory. Patients in the HRA group had
a better range of movement, although neck-cup impingement was observed.
However, more acetabular bone was sacrificed in HRA patients, and
it is unclear whether this will have an adverse effect in the long
term.
We have examined the results obtained with 72 NexGen legacy posterior stabilised-flex fixed total knee replacements in 47 patients implanted by a single surgeon between March 2003 and September 2004. Aseptic loosening of the femoral component was found in 27 (38%) of the replacements at a mean follow-up of 32 months (30 to 48) and 15 knees (21%) required revision at a mean of 23 months (11 to 45). We compared the radiologically-loose and revised knees with those which had remained well-fixed to identify the factors which had contributed to this high rate of aseptic loosening. Post-operatively, the mean maximum flexion was 136° (110° to 140°) in the loosened group and 125° (95° to 140°) in the well-fixed group (independent These implants allowed a high degree of flexion, but showed a marked rate of early loosening of the femoral component, which was associated with weight-bearing in maximum flexion.