Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears. Cite this article:
Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA. First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.Aims
Methods
The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments.Aims
Methods
Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR).Aims
Methods
The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures. A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.Aims
Methods
Objectives. Periprosthetic femoral fractures (PFFs) have a higher incidence with cementless stems. The highest incidence among various cementless stem types was observed with double-wedged stems. Short stems have been introduced as a bone-preserving alternative with a higher incidence of PFF in some studies. The purpose of this study was a direct load-to-failure comparison of a double-wedged cementless stem and a short cementless stem in a cadaveric fracture model. Methods. Eight hips from four human cadaveric specimens (age mean 76 years (60 to 89)) and eight fourth-generation composite femurs were used. None of the cadaveric specimens had compromised quality (mean T value 0.4 (-1.0 to 5.7)). Each specimen from a pair randomly received either a double-wedged stem or a short stem. A materials testing machine was used for lateral load-to-failure test of up to a maximal load of 5000 N. Results. Mean load at failure of the double-wedged stem was 2540 N (1845 to 2995) and 1867 N (1135 to 2345) for the short stem (p < 0.001). All specimens showed the same fracture pattern, consistent with a Vancouver B2 fracture. The double-wedged stem was able to sustain a higher load than its short-stemmed counterpart in all cases. Failure force was not correlated to the
To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism. In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.Aims
Methods
cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).Aims
Methods
The December 2022 Wrist & Hand Roundup360 looks at: Anti-tumour necrosis factor therapy for early-stage Dupuytren’s disease; Patient experiences of scaphoid waist fractures and their treatment; Postoperative complications following open a1 pulley release for a trigger finger or thumb; How certain are findings in distal radius fractures: a systematic review of randomized controlled trials; Partial wrist denervation in wrist osteoarthritis: patient-reported outcomes and objective function; Dorsal bridge plating versus bridging external fixation for management of complex distal radius fractures; How is reduction lost in distal radius fractures in females aged 50 years and older; The HAND-Q: psychometrics of a new patient-reported outcome measure for clinical and research applications.
Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in
Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and
Aims. Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. Materials and Methods. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6). Results. At eight weeks, FiberTape alone or FiberTape-augmented autograft demonstrated increased biomechanical stability compared with autograft regarding ultimate load to failure (p = 0.035), elongation (p = 0.006), and energy absorption (p = 0.022). FiberTape-grafted samples also demonstrated increased
The June 2024 Spine Roundup360 looks at: Intraoperative navigation increases the projected lifetime cancer risk in patients undergoing surgery for adolescent idiopathic scoliosis; Intrawound vancomycin powder reduces delayed deep surgical site infections following posterior spinal fusion for adolescent idiopathic scoliosis; Characterizing negative online reviews of spine surgeons; Proximal junctional failure after surgical instrumentation in adult spinal deformity: biomechanical assessment of proximal instrumentation stiffness; Nutritional supplementation and wound healing: a randomized controlled trial.
The December 2024 Spine Roundup360 looks at: Rostral facet joint violations in robotic- and navigation-assisted pedicle screw placement; The inhibitory effect of non-steroidal anti-inflammatory drugs and opioids on spinal fusion: an animal model;L5-S1 transforaminal lumbar interbody fusion is associated with increased revisions compared to L4-L5 TLIF at two years; Immediate versus gradual brace weaning protocols in adolescent idiopathic scoliosis: a randomized clinical trial; Effectiveness and cost-effectiveness of an individualized, progressive walking, and education intervention for the prevention of low back pain recurrence in Australia (WalkBack): a randomized controlled trial; Usefulness and limitations of intraoperative pathological diagnosis using frozen sections for spinal cord tumours; Effect of preoperative HbA1c and blood glucose level on the surgical site infection after lumbar instrumentation surgery; How good are surgeons at achieving their alignment goals?
Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the
Postoperative complication rates remain relatively high after adult spinal deformity (ASD) surgery. The extent to which modifiable patient-related factors influence complication rates in patients with ASD has not been effectively evaluated. The aim of this retrospective cohort study was to evaluate the association between modifiable patient-related factors and complications after corrective surgery for ASD. ASD patients with two-year data were included. Complications were categorized as follows: any complication, major, medical, surgical, major mechanical, major radiological, and reoperation. Modifiable risk factors included smoking, obesity, osteoporosis, alcohol use, depression, psychiatric diagnosis, and hypertension. Patients were stratified by the degree of baseline deformity (low degree of deformity (LowDef)/high degree of deformity (HighDef): below or above 20°) and age (Older/Younger: above or below 65 years). Complication rates were compared for modifiable risk factors in each age/deformity group, using multivariable logistic regression analysis to adjust for confounders.Aims
Methods
Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αβ and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss. Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old Aims
Methods
The use of cementless total knee arthroplasty (TKA) components has increased during the past decade. The initial design of cementless metal-backed patellar components had shown high failure rates due to many factors. The aim of this study was to evaluate the clinical results of a second-generation cementless, metal-backed patellar component of a modern design. This was a retrospective review of 707 primary TKAs in 590 patients from a single institution, using a cementless, metal-backed patellar component with a mean follow-up of 6.9 years (2 to 12). A total of 409 TKAs were performed in 338 females and 298 TKAs in 252 males. The mean age of the patients was 63 years (34 to 87) and their mean BMI was 34.3 kg/m2 (18.8 to 64.5). The patients were chosen to undergo a cementless procedure based on age and preoperative radiological and intraoperative bone quality. Outcome was assessed using the Knee Society knee and function scores and range of motion (ROM), complications, and revisions.Aims
Methods
There is ambiguity surrounding the degree of scaphoid union required to safely allow mobilization following scaphoid waist fracture. Premature mobilization could lead to refracture, but late mobilization may cause stiffness and delay return to normal function. This study aims to explore the risk of refracture at different stages of scaphoid waist fracture union in three common fracture patterns, using a novel finite element method. The most common anatomical variant of the scaphoid was modelled from a CT scan of a healthy hand and wrist using 3D Slicer freeware. This model was uploaded into COMSOL Multiphysics software to enable the application of physiological enhancements. Three common waist fracture patterns were produced following the Russe classification. Each fracture had differing stages of healing, ranging from 10% to 90% partial union, with increments of 10% union assessed. A physiological force of 100 N acting on the distal pole was applied, with the risk of refracture assessed using the Von Mises stress.Aims
Methods