The aim of this study was to assess orthopaedic oncologic patient morbidity resulting from COVID-19 related institutional delays and surgical shutdowns during the first wave of the pandemic in New York, USA. A single-centre retrospective observational study was conducted of all orthopaedic oncologic patients undergoing surgical evaluation from March to June 2020. Patients were prioritized as level 0-IV, 0 being elective and IV being emergent. Only priority levels 0 to III were included. Delay duration was measured in days and resulting morbidities were categorized into seven groups: prolonged pain/disability; unplanned preoperative radiation and/or chemotherapy; local tumour progression; increased systemic disease; missed opportunity for surgery due to progression of disease/lost to follow up; delay in diagnosis; and no morbidity.Aims
Methods
We report a retrospective review of 62 consecutive patients who had a vascularised fibular transfer to reconstruct a large skeletal defect. We were particularly interested in the bone dynamics of the vascularised graft, since fractures occurred in 25% of the cases at an average time of eight months after surgery. Hypertrophy was more common when the limb was mechanically loaded; it was enhanced where the graft was not bypassed by internal fixation. The length of the graft and the use of additional bone graft material had no influence on the incidence of stress fracture or on hypertrophy. We conclude that a vascularised graft should be protected against
Spondylolysis occurring after a spinal fusion is considered to result from operative damage to the pars interarticularis on both sides. Fourteen cases are reported, and compared with the 23 cases which have previously been published. The defects are usually recognised within five years of fusion, and usually occur immediately above the fusion mass. Other contributory causes may be:
Fifteen patients who limped and had early
Implants of solid sintered hydroxyapatite form very tight bonds with living bone, but are susceptible to
Sterilisation by gamma irradiation in the presence of air causes free radicals generated in polyethylene (PE) to react with oxygen, which could lead to loss of physical properties and reduction in
The elbow flexor muscles of four men were trained using maximal voluntary isometric contractions. Thirty contractions a day were performed for five weeks. The four men and four control subjects were tested once a week: measurements of the supramaximally stimulated isometric twitch force, the time taken for the twitch force to peak and the tetanic force were carried out; simultaneously, measurements of the force of maximal voluntary isometric contraction and resistance to
The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals.Aims
Methods
The purpose of this study was to identify the changes in untreated long head of the biceps brachii tendon (LHBT) after a rotator cuff tear and to evaluate the factors related to the changes. A cohort of 162 patients who underwent isolated supraspinatus with the preservation of LHBT was enrolled and evaluated. The cross-sectional area (CSA) of the LHBT on MRI was measured in the bicipital groove, and preoperative to postoperative difference was calculated at least 12 months postoperatively. Second, postoperative changes in the LHBT including intratendinous signal change, rupture, dislocation, or superior labral lesions were evaluated with seeking of factors that were correlated with the changes or newly developed lesions after rotator cuff repair.Aims
Methods
1. Prosthetic acetabular cups of the Charnley and McKee-Farrar designs were cemented into cadaveric pelves using different procedures for preparing the acetabulum. 2. The torsional moments needed to loosen these cups were measured. 3. The torsional moments so measured were found to be from about four to more than twenty times higher than the frictional moments measured in independent tests on the two designs of prosthesis. 4. It is argued that late looseness of the acetabular component after total hip replacement, in the absence of infection, seems most likely to be due to thermal damage to the bone occurring at the time of polymerisation of the cement, and to subsequent bone resorption. 5. Surgical preparation of the acetabulum should include removal of all the articular cartilage and cleaning of the acetabular fossa, but the drilling of additional holes in the floor of the acetabulum seems unimportant. 6. The possibility of
The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA. A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis.Aims
Methods
The imminent introduction of the new Trauma & Orthopaedic (T&O) curriculum, and the implementation of the Improving Surgical Training initiative, reflect yet another paradigm shift in the recent history of trauma and orthopaedic training. The move to outcome-based training without time constraints is a radical departure from the traditional time-based structure and represents an exciting new training frontier. This paper summarizes the history of T&O training reform, explains the rationale for change, and reflects on lessons learnt from the past. Cite this article:
The purpose of the work described was to find the average pressure on each of several areas of the acetabular cartilage of the cadaver hip under physiological loads. By obtaining load-deflection curves for one chosen area of cartilage, firstly with all the cartilage present and then after the successive removal of other areas, the fractions of the original load carried by the several areas were found, and hence the average pressures on those areas. Seventeen hips (age range twenty. two to eighty-seven years) were examined. Local pressures varied from zero to 3.4 times the average pressure in each hip. The highest pressures in the series (about 4 to 5 megaNewtons per square metre) were on areas of thin fibrocartilage which were identified at the zenith of certain acetabula. The results are too few to establish whether or not the pressure distribution was age-related. The higher pressures found are within the range which in other experiments has led to
The
1. Experience with a refined type of implantable electrode for the myo-electric control of externally powered prostheses is reported. 2. The electrodes are externally energised by electromagnetic induction and therefore do not contain any battery cells. The myo-potentials are transmitted in frequency-modulated form and detected by a receiver placed on the skin. The implantable electrode, measuring 5x11x4 millimetres, is encapsulated in epoxy resin. 3. Six electrodes have been implanted in the forearms of two normal subjects and two below-elbow amputees. The time of implantation ranged from three to fifteen months. Macroscopically, a fibrous capsule developed around the electrodes. Histological examination showed a capsule of granulation tissue of varying thickness with slight inflammatory reaction and foreign-body giant cells. 4. In all cases except one the signals received have been of high quality as ascertained by conventional electromyography and frequency analysis. There has been no significant deterioration in signal quality during the follow-up periods. 5. The major source of failure was
1. Posterior fusion of the spine in scoliosis cannot be relied upon to maintain correction of the curve or to prevent progression of a vicious resistant curve. It can, however, hold to some extent the correction of a mobile curve and the compensation of a fixed curve. 2. Despite generally poor results as assessed radiographically, the clinical improvement is often gratifying. Most patients claim to be greatly improved: the spine feels stronger, there is less
Restoration of proximal medial femoral support is the keystone in the treatment of intertrochanteric fractures. None of the available implants are effective in constructing the medial femoral support. Medial sustainable nail (MSN-II) is a novel cephalomedullary nail designed for this. In this study, biomechanical difference between MSN-II and proximal femoral nail anti-rotation (PFNA-II) was compared to determine whether or not MSN-II can effectively reconstruct the medial femoral support. A total of 36 synthetic femur models with simulated intertrochanteric fractures without medial support (AO/OTA 31-A2.3) were assigned to two groups with 18 specimens each for stabilization with MSN-II or PFNA-II. Each group was further divided into three subgroups of six specimens according to different experimental conditions respectively as follows: axial loading test; static torsional test; and cyclic loading test.Aims
Methods