The primary aim was to estimate the cost-effectiveness of routine operative fixation for all patients with humeral shaft fractures. The secondary aim was to estimate the health economic implications of using a Radiographic Union Score for HUmeral fractures (RUSHU) of < 8 to facilitate selective fixation for patients at risk of nonunion. From 2008 to 2017, 215 patients (mean age 57 yrs (17 to 18), 61% female (n = 130/215)) with a nonoperatively managed humeral diaphyseal fracture were retrospectively identified. Union was achieved in 77% (n = 165/215) after initial nonoperative management, with 23% (n = 50/215) uniting after surgery for nonunion. The EuroQol five-dimension three-level health index (EQ-5D-3L) was obtained via postal survey. Multiple regression was used to determine the independent influence of patient, injury, and management factors upon the EQ-5D-3L. An incremental cost-effectiveness ratio (ICER) of < £20,000 per quality-adjusted life-year (QALY) gained was considered cost-effective.Aims
Methods
Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’). Cite this article:
The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment. Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery.Aims
Methods
The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing. External validation of a CNN on a temporally separate (separated by time) or geographically separate (separated by location) dataset is crucial to assess generalizability of the CNN before application to clinical practice in other institutions. We aimed to answer the following questions: are current CNNs for fracture recognition externally valid?; which methods are applied for external validation (EV)?; and, what are reported performances of the EV sets compared to the internal validation (IV) sets of these CNNs? The PubMed and Embase databases were systematically searched from January 2010 to October 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset, and diagnostic performance characteristics on the IV and EV datasets were collected and compared. Quality assessment was conducted using a seven-item checklist based on a modified Methodologic Index for NOn-Randomized Studies instrument (MINORS).Aims
Methods
There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines. Cite this article:
Aims. Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods. In this retrospective cohort study, ultrasound and
Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis