Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised. Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip.
Loosening of pedicle screws is a major complication of posterior
spinal stabilisation, especially in the osteoporotic spine. Our
aim was to evaluate the effect of cement augmentation compared with
extended dorsal instrumentation on the stability of posterior spinal
fixation. A total of 12 osteoporotic human cadaveric spines (T11-L3) were
randomised by bone mineral density into two groups and instrumented
with pedicle screws: group I (SHORT) separated T12 or L2 and group
II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were
augmented with cement unilaterally in each vertebra. Fatigue testing
was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz)
load with stepwise increasing peak force.Aims
Materials and Methods
Posterior tilt of the pelvis with sitting provides biological
acetabular opening. Our goal was to study the post-operative interaction
of skeletal mobility and sagittal acetabular component position. This was a radiographic study of 160 hips (151 patients) who
prospectively had lateral spinopelvic hip radiographs for skeletal
and implant measurements. Intra-operative acetabular component position
was determined according to the pre-operative spinal mobility. Sagittal
implant measurements of ante-inclination and sacral acetabular angle were
used as surrogate measurements for the risk of impingement, and
intra-operative acetabular component angles were compared with these.Aims
Materials and Methods
Revision total elbow arthroplasty (TEA) is often challenging.
The aim of this study was to report on the clinical and radiological
results of revision arthroplasty of the elbow with the Latitude
TEA. Between 2006 and 2010 we used the Latitude TEA for revision in
18 consecutive elbows (17 patients); mean age 53 years (28 to 80);
14 women. A Kudo TEA was revised in 15 elbows and a Souter-Strathclyde
TEA in three. Stability, range of movement (ROM), visual analogue score (VAS)
for pain and functional scores, Elbow Functional Assessment Scale
(EFAS), the Functional Rating Index of Broberg and Morrey (FRIBM)
and the Modified Andrews’ Elbow Scoring System (MAESS) were assessed
pre-operatively and at each post-operative follow-up visit (six,
12 months and biennially thereafter). Radiographs were analysed
for loosening, fractures and dislocation. The mean follow-up was
59 months (26 to 89).Aims
Patients and Methods
This article presents a unified clinical theory
that links established facts about the physiology of bone and homeostasis,
with those involved in the healing of fractures and the development
of nonunion. The key to this theory is the concept that the tissue
that forms in and around a fracture should be considered a specific
functional entity. This ‘bone-healing unit’ produces a physiological
response to its biological and mechanical environment, which leads
to the normal healing of bone. This tissue responds to mechanical
forces and functions according to Wolff’s law, Perren’s strain theory
and Frost’s concept of the “mechanostat”. In response to the local
mechanical environment, the bone-healing unit normally changes with
time, producing different tissues that can tolerate various levels
of strain. The normal result is the formation of bone that bridges
the fracture – healing by callus. Nonunion occurs when the bone-healing
unit fails either due to mechanical or biological problems or a
combination of both. In clinical practice, the majority of nonunions
are due to mechanical problems with instability, resulting in too
much strain at the fracture site. In most nonunions, there is an
intact bone-healing unit. We suggest that this maintains its biological
potential to heal, but fails to function due to the mechanical conditions.
The theory predicts the healing pattern of multifragmentary fractures
and the observed morphological characteristics of different nonunions.
It suggests that the majority of nonunions will heal if the correct
mechanical environment is produced by surgery, without the need
for biological adjuncts such as autologous bone graft. Cite this article:
Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired Objectives
Materials and Methods
The goals of this study were: 1) to determine if high-fat diet
(HFD) feeding in female mice would negatively impact biomechanical
and histologic consequences on the Achilles tendon and quadriceps
muscle; and 2) to investigate whether exercise and branched-chain
amino acid (BCAA) supplementation would affect these parameters
or attenuate any negative consequences resulting from HFD consumption. We examined the effects of 16 weeks of 60% HFD feeding, voluntary
exercise (free choice wheel running) and BCAA administration in
female C57BL/6 mice. The Achilles tendons and quadriceps muscles
were removed at the end of the experiment and assessed histologically
and biomechanically.Objectives
Methods
Anatomical total knee arthroplasty alignment
Joint replacement of the hip and knee remain
very satisfactory operations. They are, however, expensive. The
actual manufacturing of the implant represents only 30% of the final
cost, while sales and marketing represent 40%. Recently, the patents
on many well established and successful implants have expired. Companies
have started producing and distributing implants that purport to
replicate existing implants with good long-term results. The aims of this paper are to assess the legality, the monitoring
and cost saving implications of such generic implants. We also assess
how this might affect the traditional orthopaedic implant companies. Cite this article:
The eccentric glenosphere was principally introduced into reverse
shoulder arthroplasty to reduce the incidence of scapular notching.
There is only limited information about the influence of its design
on deltoid power and joint reaction forces. The aim of our study was to investigate how the diameter and
eccentricity of the glenosphere affect the biomechanics of the deltoid
and the resultant joint reaction forces. Different sizes of glenosphere and eccentricity were serially
tested in ten cadaveric shoulders using a custom shoulder movement
simulator.Aims
Methods
This animal study compares different methods
of performing an osteotomy, including using an Erbium-doped Yttrium
Aluminum Garnet laser, histologically, radiologically and biomechanically.
A total of 24 New Zealand rabbits were divided into four groups
(Group I: multihole-drilling; Group II: Gigli saw; Group III: electrical
saw blade and Group IV: laser). A proximal transverse diaphyseal
osteotomy was performed on the right tibias of the rabbits after the
application of a circular external fixator. The rabbits were killed
six weeks after the procedure, the operated tibias were resected
and radiographs taken. The specimens were tested biomechanically using three-point bending
forces, and four tibias from each group were examined histologically.
Outcome parameters were the biomechanical stability of the tibias
as assessed by the failure to load and radiographic and histological
examination of the osteotomy site. The osteotomies healed in all specimens both radiographically
and histologically. The differences in the mean radiographic (p
= 0.568) and histological (p = 0.71) scores, and in the mean failure
loads (p = 0.180) were not statistically significant between the
groups. Different methods of performing an osteotomy give similar quality
of union. The laser osteotomy, which is not widely used in orthopaedics
is an alternative to the current methods. Cite this article:
Slipped capital femoral epiphysis (SCFE) may
lead to symptomatic femoroacetabular impingement (FAI). We report our
experience of arthroscopic treatment, including osteochondroplasty,
for the sequelae of SCFE. Data were prospectively collected on patients undergoing arthroscopy
of the hip for the sequelae of SCFE between March 2007 and February
2013, including demographic data, radiological assessment of the
deformity and other factors that may influence outcome, such as
the presence of established avascular necrosis. Patients completed
the modified Harris hip score (mHHS) and the non-arthritic hip score
(NAHS) before and after surgery. In total, 18 patients with a mean age of 19 years (13 to 42),
were included in the study. All patients presented with pain in
the hip and mechanical symptoms, and had evidence of FAI (cam or
mixed impingement) on plain radiographs. The patients underwent arthroscopic osteoplasty of the femoral
neck. The mean follow-up was 29 months (23 to 56). The mean mHHS and NAHS scores improved from 56.2 (27.5 to 100.1)
and 52.1 (12.5 to 97.5) pre-operatively to 75.1 (33.8 to 96.8, p
= 0.01) and 73.6 (18.8 to 100, p = 0.02) at final follow-up, respectively.
Linear regression analysis demonstrated a significant association
between poorer outcome scores and increased time to surgery following SCFE
(p <
0.05 for all parameters except baseline MHHS). Symptomatic FAI following (SCFE) may be addressed using arthroscopic
techniques, and should be treated promptly to minimise progressive
functional impairment and chondrolabral degeneration. Take home message: Arthroscopy of the hip can be used to treat
femoroacetabular impingement successfully following SCFE. However,
this should be performed promptly after presentation in order to
prevent irreversible progression and poorer clinical outcomes. Cite this article:
Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.Objectives
Methods
Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.Aims
Methods
The August 2015 Spine Roundup360 looks at: Steroids may be useful in avoiding dysphagia in anterior cervical discectomy and fusion (ACDF); Perhaps X-Stop ought to stop?; Is cervical plexus block in ACDF the gateway to day case spinal surgery?; Epidural past its heyday?; Steroids in lumbar back pain; Lumbar disc replacement improving; Post-discectomy arthritis
This article is a systematic review of the published
literature about the biomechanics, functional outcome and complications
of intramedullary nailing of fractures of the distal radius. We searched the Medline and EMBASE databases and included all
studies which reported the outcome of intramedullary (IM) nailing
of fractures of the distal radius. Data about functional outcome,
range of movement (ROM), strength and complications, were extracted.
The studies included were appraised independently by both authors
using a validated quality assessment scale for non-controlled studies
and the CONSORT statement for randomised controlled trials (RCTs). The search strategy revealed 785 studies, of which 16 were included
for full paper review. These included three biomechanical studies,
eight case series and five randomised controlled trials (RCTs). The biomechanical studies concluded that IM nails were at least
as strong as locking plates. The clinical studies reported that
IM nailing gave a comparable ROM, functional outcome and grip strength
to other fixation techniques. However, the mean complication rate of intramedullary nailing
was 17.6% (0% to 50%). This is higher than the rates reported in
contemporary studies for volar plating. It raises concerns about
the role of intramedullary nailing, particularly when comparative
studies have failed to show that it has any major advantage over
other techniques. Further adequately powered RCTs comparing the
technique to both volar plating and percutaneous wire fixation are needed. Cite this article:
Femoroacetabular impingement causes groin pain
and decreased athletic performance in active adults. This bony conflict
may result in femoroacetabular subluxation if of sufficient magnitude. The ligamentum teres has recently been reported to be capable
of withstanding tensile loads similar to that of the anterior cruciate
ligament, and patents with early subluxation of the hip may become
dependent on the secondary restraint that is potentially provided
by the ligamentum teres. Rupture of the ligamentum may thus cause
symptomatic hip instability during athletic activities. An arthroscopic reconstruction of the ligamentum teres using
iliotibial band autograft was performed in an attempt to restore
this static stabiliser in a series of four such patients. Early
clinical results have been promising. The indications, technique
and early outcomes of this procedure are discussed.
Reported rates of dislocation in hip hemiarthroplasty
(HA) for the treatment of intra-capsular fractures of the hip, range
between 1% and 10%. HA is frequently performed through a direct
lateral surgical approach. The aim of this study is to determine
the contribution of the anterior capsule to the stability of a cemented
HA through a direct lateral approach. A total of five whole-body cadavers were thawed at room temperature,
providing ten hip joints for investigation. A Thompson HA was cemented
in place via a direct lateral approach. The cadavers were then positioned
supine, both knee joints were disarticulated and a digital torque
wrench was attached to the femur using a circular frame with three
half pins. The wrench applied an external rotation force with the
hip in extension to allow the hip to dislocate anteriorly. Each
hip was dislocated twice; once with a capsular repair and once without
repairing the capsule. Stratified sampling ensured the order in
which this was performed was alternated for the paired hips on each
cadaver. Comparing peak torque force in hips with the capsule repaired
and peak torque force in hips without repair of the capsule, revealed
a significant difference between the ‘capsule repaired’ (mean 22.96
Nm, standard deviation ( Cite this article:
The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck. We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads. In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens. When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated.
We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue. At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p <
0.001). The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.