We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group. We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement.
Instability in flexion after total knee replacement
(TKR) typically occurs as a result of mismatched flexion and extension
gaps. The goals of this study were to identify factors leading to
instability in flexion, the degree of correction, determined radiologically,
required at revision surgery, and the subsequent clinical outcomes.
Between 2000 and 2010, 60 TKRs in 60 patients underwent revision
for instability in flexion associated with well-fixed components.
There were 33 women (55%) and 27 men (45%); their mean age was 65
years (43 to 82). Radiological measurements and the Knee Society
score (KSS) were used to assess outcome after revision surgery.
The mean follow-up was 3.6 years (2 to 9.8). Decreased condylar
offset (p <
0.001), distalisation of the joint line (p <
0.001)
and increased posterior tibial slope (p <
0.001) contributed
to instability in flexion and required correction at revision to regain
stability. The combined mean correction of posterior condylar offset
and joint line resection was 9.5 mm, and a mean of 5° of posterior
tibial slope was removed. At the most recent follow-up, there was
a significant improvement in the mean KSS for the knee and function
(both p <
0.001), no patient reported instability and no patient
underwent further surgery for instability. The following step-wise approach is recommended: reduction of
tibial slope, correction of malalignment, and improvement of condylar
offset. Additional joint line elevation is needed if the above steps
do not equalise the flexion and extension gaps. Cite this article:
Degenerative problems of the hip in patients
with childhood and adult onset neuromuscular disorders can be challenging
to treat. Many orthopaedic surgeons are reluctant to recommend total
hip replacement (THR) for patients with underlying neuromuscular
disorders due to the perceived increased risks of dislocation, implant loosening,
and lack of information about the functional outcomes and potential
benefits of these procedures in these patients. Modular femoral
components and alternative bearings which facilitate the use of
large femoral heads, constrained acetabular components and perhaps
more importantly, a better understanding about the complications
and outcomes of THR in the patient with neuromuscular disorders,
make this option viable. This paper will review the current literature
and our experience with THR in the more frequently encountered neuromuscular
disorders. Cite this article:
The use of robots in orthopaedic surgery is an
emerging field that is gaining momentum. It has the potential for significant
improvements in surgical planning, accuracy of component implantation
and patient safety. Advocates of robot-assisted systems describe
better patient outcomes through improved pre-operative planning
and enhanced execution of surgery. However, costs, limited availability,
a lack of evidence regarding the efficiency and safety of such systems
and an absence of long-term high-impact studies have restricted
the widespread implementation of these systems. We have reviewed
the literature on the efficacy, safety and current understanding of
the use of robotics in orthopaedics. Cite this article:
Total knee replacement (TKR) smart tibial trials
have load-bearing sensors which will show quantitative compartment
pressure values and femoral-tibial tracking patterns. Without smart
trials, surgeons rely on feel and visual estimation of imbalance
to determine if the knee is optimally balanced. Corrective soft-tissue
releases are performed with minimal feedback as to what and how
much should be released. The smart tibial trials demonstrate graphically
where and how much imbalance is present, so that incremental releases
can be performed. The smart tibial trials now also incorporate accelerometers
which demonstrate the axial alignment. This now allows the surgeon
the option to perform a slight recut of the tibia or femur to provide
soft-tissue balance without performing soft-tissue releases. Using
a smart tibial trial to assist with soft-tissue releases or bone
re-cuts, improved patient outcomes have been demonstrated at one
year in a multicentre study of 135 patients (135 knees). Cite this article:
The cam-type deformity in femoroacetabular impingement
is a 3D deformity. Single measurements using radiographs, CT or
MRI may not provide a true estimate of the magnitude of the deformity.
We performed an analysis of the size and location of measurements
of the alpha angle (α°) using a CT technique which could be applied
to the 3D reconstructions of the hip. Analysis was undertaken in
42 patients (57 hips; 24 men and 18 women; mean age 38 years (16
to 58)) who had symptoms of femoroacetabular impingement related
to a cam-type abnormality. An α° of >
50° was considered a significant
indicator of cam-type impingement. Measurements of the α° were made
at different points around the femoral head/neck junction at intervals
of 30°: starting at the nine o’clock (posterior), ten, eleven and
twelve o’clock (superior), one, two and ending at three o’clock
(anterior) position. The mean maximum increased α° was 64.6° (50.8° to 86°). The two
o’clock position was the most common point to find an increased α°
(53 hips; 93%), followed by one o’clock (48 hips; 84%). The largest α°
for each hip was found most frequently at the two o’clock position
(46%), followed by the one o’clock position (39%). Generally, raised α angles
extend over three segments of the clock face. Single measurements of the α°, whether pre- or post-operative,
should be viewed with caution as they may not be representative
of the true size of the deformity and not define whether adequate
correction has been achieved following surgery. Cite this article:
Complications involving the patellofemoral joint,
caused by malrotation of the femoral component during total knee replacement,
are an important cause of persistent pain and failure leading to
revision surgery. The aim of this study was to determine and quantify
the influence of femoral component malrotation on patellofemoral
wear, and to determine whether or not there is a difference in the
rate of wear of the patellar component when articulated against
oxidised zirconium (OxZr) and cobalt-chrome (CoCr) components. An The results suggest that patellar maltracking due to an internally
rotated femoral component leads to an increased mean patellar wear.
Although not statistically significant, the mean wear production
may be lower for OxZr than for CoCr components.
The aim of this study was to investigate the
incidence of dysplasia in the ‘normal’ contralateral hip in patients
with unilateral developmental dislocation of the hip (DDH) and to
evaluate the long-term prognosis of such hips. A total of 48 patients
(40 girls and eight boys) were treated for late-detected unilateral
DDH between 1958 and 1962. After preliminary skin traction, closed
reduction was achieved at a mean age of 17.8 months (4 to 65) in
all except one patient who needed open reduction. In 25 patients
early derotation femoral osteotomy of the contralateral hip had been
undertaken within three years of reduction, and later surgery in
ten patients. Radiographs taken during childhood and adulthood were
reviewed. The mean age of the patients was 50.9 years (43 to 55)
at the time of the latest radiological review. In all, eight patients (17%) developed dysplasia of the contralateral
hip, defined as a centre-edge (CE) angle <
20° during childhood
or at skeletal maturity. Six of these patients underwent surgery
to improve cover of the femoral head; the dysplasia improved in
two after varus femoral osteotomy and in two after an acetabular
shelf operation. During long-term follow-up the dysplasia deteriorated
to subluxation in two patients (CE angles 4° and 5°, respectively)
who both developed osteoarthritis (OA), and one of these underwent
total hip replacement at the age of 49 years. In conclusion, the long-term prognosis for the contralateral
hip was relatively good, as OA occurred in only two hips (4%) at
a mean follow-up of 50 years. Regular review of the ‘normal’ side
is indicated, and corrective surgery should be undertaken in those
who develop subluxation. Cite this article:
Femoroacetabular impingement (FAI) causes pain
and chondrolabral damage via mechanical overload during movement
of the hip. It is caused by many different types of pathoanatomy,
including the cam ‘bump’, decreased head–neck offset, acetabular
retroversion, global acetabular overcoverage, prominent anterior–inferior
iliac spine, slipped capital femoral epiphysis, and the sequelae
of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence
studies show that anatomic variations that cause FAI are common
in the asymptomatic population. Young athletes may be predisposed
to FAI because of the stress on the physis during development. Other
factors, including the soft tissues, may also influence symptoms and
chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated
arthroscopically. Although the results are favourable, morphologies
can be complex, patient expectations are high and the surgery is
challenging. The long-term outcomes of hip arthroscopy are still
forthcoming and it is unknown if treatment of FAI will prevent arthrosis.
The April 2014 Hip & Pelvis Roundup360 looks at: Recent arthroplasty and flight; whether that squeak could be a fracture; diagnosing early infected hip replacement; impaction grafting at a decade; whether squeaking is more common than previously thought; femoral offset associated with post THR outcomes; and periprosthetic fracture stabilisation.
We measured the orientation of the acetabular and femoral components in 45 patients (33 men, 12 women) with a mean age of 53.4 years (30 to 74) who had undergone revision of metal-on-metal hip resurfacings. Three-dimensional CT was used to measure the inclination and version of the acetabular component, femoral version and the horizontal femoral offset, and the linear wear of the removed acetabular components was measured using a roundness machine. We found that acetabular version and combined version of the acetabular and femoral components were weakly positively correlated with the rate of wear. The acetabular inclination angle was strongly positively correlated with the rate of wear. Femoral version was weakly negatively correlated with the rate of wear. Application of a threshold of >
5 μm/year for the rate of wear in order to separate the revisions into low or high wearing groups showed that more high wearing components were implanted outside Lewinnek’s safe zone, but that this was mainly due to the inclination of the acetabular component, which was the only parameter that significantly differed between the groups. We were unable to show that excess version of the acetabular component alone or combined with femoral version was associated with an increase in the rate of wear based on our assessment of version using CT.
We compared a modular neck system with a non-modular system in a cementless anatomical total hip replacement (THR). Each group consisted of 74 hips with developmental hip dysplasia. Both groups had the same cementless acetabular component and the same articulation, which consisted of a conventional polyethylene liner and a 28 mm alumina head. The mean follow-up was 14.5 years (13 to 15), at which point there were significant differences in the mean total Harris hip score (modular/non-modular: 98.6 (64 to 100)/93.8 (68 to 100)), the mean range of abduction (32° (15° to 40°)/28 (0° to 40°)), use of a 10° elevated liner (31%/100%), the incidence of osteolysis (27%/79.7%) and the incidence of equal leg lengths (≥ 6 mm, 92%/61%). There was no disassociation or fracture of the modular neck. The modular system reduces the need for an elevated liner, thereby reducing the incidence of osteolysis. It gives a better range of movement and allows the surgeon to make an accurate adjustment of leg length.
The management of osteoarthritis of the knee associated with patellar instability secondary to external tibial torsion >
45° is challenging. Patellofemoral biomechanics in these patients cannot be achieved by intra-articular correction using standard techniques of total knee replacement. We reviewed seven patients (eight knees) with recurrent patellar dislocation and one with bilateral irreducible lateral dislocation who had undergone simultaneous total knee replacement and internal tibial derotational osteotomy. All had osteoarthritis and severe external tibial torsion. The mean follow-up was for 47.2 months (24 to 120). The mean objective and functional Knee Society scores improved significantly (p = 0.0001) from 29.7 and 41.5 pre-operatively to 71.4 and 73.5 post-operatively, respectively. In all patients the osteotomies healed and patellar stability was restored. Excessive external tibial torsion should be identified and corrected in patients with osteoarthritis and patellar instability. Simultaneous internal rotation osteotomy of the tibia and total knee replacement is a technically demanding but effective treatment for such patients.
To confirm whether developmental dysplasia of
the hip has a risk of hip impingement, we analysed maximum ranges
of movement to the point of bony impingement, and impingement location
using three-dimensional (3D) surface models of the pelvis and femur
in combination with 3D morphology of the hip joint using computer-assisted methods.
Results of computed tomography were examined for 52 hip joints with
DDH and 73 normal healthy hip joints. DDH shows larger maximum extension
(p = 0.001) and internal rotation at 90° flexion (p <
0.001).
Similar maximum flexion (p = 0.835) and external rotation (p = 0.713)
were observed between groups, while high rates of extra-articular
impingement were noticed in these directions in DDH (p <
0.001).
Smaller cranial acetabular anteversion (p = 0.048), centre-edge
angles (p <
0.001), a circumferentially shallower acetabulum,
larger femoral neck anteversion (p <
0.001), and larger alpha
angle were identified in DDH. Risk of anterior impingement in retroverted
DDH hips is similar to that in retroverted normal hips in excessive
adduction but minimal in less adduction. These findings might be
borne in mind when considering the possibility of extra-articular
posterior impingement in DDH being a source of pain, particularly
for patients with a highly anteverted femoral neck. Cite this article:
Several factors have been implicated in unsatisfactory
results after total hip replacement (THR). We examined whether femoral
offset, as measured on digitised post-operative radiographs, was
associated with pain after THR. The routine post-operative radiographs
of 362 patients (230 women and 132 men, mean age 70.0 years (35.2
to 90.5)) who received primary unilateral THRs of varying designs
were measured after calibration. The femoral offset was calculated
using the known dimensions of the implants to control for femoral
rotation. Femoral offset was categorised into three groups: normal
offset (within 5 mm of the height-adjusted femoral offset), low
offset and high offset. We determined the associations to the absolute
final score and the improvement in the mean Western Ontario and
McMaster Universities osteoarthritis index (WOMAC) pain subscale
scores at three, six, 12 and 24 months, adjusting for confounding
variables. The amount of femoral offset was associated with the mean WOMAC
pain subscale score at all points of follow-up, with the low-offset
group reporting less WOMAC pain than the normal or high-offset groups
(six months: 7.01 ( Cite this article:
Malposition of the acetabular component is a risk factor for post-operative dislocation after total hip replacement (THR). We have investigated the influence of the orientation of the acetabular component on the probability of dislocation. Radiological anteversion and abduction of the component of 127 hips which dislocated post-operatively were measured by Einzel-Bild-Röentgen-Analysis and compared with those in a control group of 342 patients. In the control group, the mean value of anteversion was 15° and of abduction 44°. Patients with anterior dislocation after primary THR showed significant differences in the mean angle of anteversion (17°), and abduction (48°) as did patients with posterior dislocation (anteversion 11°, abduction 42°). After revision patients with posterior dislocation showed significant differences in anteversion (12°) and abduction (40°). Our results demonstrate the importance of accurate positioning of the acetabular component in order to reduce the frequency of subsequent dislocations. Radiological anteversion of 15° and abduction of 45° are the lowest at-risk values for dislocation.
This study examined the relationship between the cross-over sign and the true three-dimensional anatomical version of the acetabulum. We also investigated whether in true retroversion there is excessive femoral head cover anteriorly. Radiographs of 64 hips in patients being investigated for symptoms of femoro-acetabular impingement were analysed and the presence of a cross-over sign was documented. CT scans of the same hips were analysed to determine anatomical version and femoral head cover in relation to the anterior pelvic plane after correcting for pelvic tilt. The sensitivity and specificity of the cross-over sign were 92% and 55%, respectively for identifying true acetabular retroversion. There was no significant difference in total cover between normal and retroverted cases. Anterior and posterior cover were, however, significantly different (p <
0.001 and 0.002). The cross-over sign was found to be sensitive but not specific. The results for femoral head cover suggest that retroversion is characterised by posterior deficiency but increased cover anteriorly.
Our aim in this retrospective study of 52 children with spastic hemiplegia was to determine the factors which affected the amount of residual pelvic rotation after single-event multilevel surgery. The patients were divided into two groups, those who had undergone femoral derotation osteotomy and those who had not. Pelvic rotation improved significantly after surgery in the femoral osteotomy group (p <
0.001) but not in the non-femoral osteotomy group. Multiple regressions identified the following three independent variables, which significantly affected residual pelvic rotation: the performance of femoral derotation osteotomy (p = 0.049), the pre-operative pelvic rotation (p = 0.003) and the post-operative internal rotation of the hip (p = 0.001). We concluded that there is a decrease in the amount of pelvic rotation after single-event multilevel surgery with femoral derotation osteotomy. However, some residual rotation may persist when patients have severe rotation before surgery.
We describe our experience with the ‘four-in-one’ procedure for habitual dislocation of the patella in five children (six knees). All the patients presented with severe generalised ligamentous laxity and aplasia of the trochlear groove. All had a lateral release, proximal ‘tube’ realignment of the patella, semitendinosus tenodesis and transfer of the patellar tendon. The mean age at the time of the operation was 6.1 years (4.9 to 6.9), and the patients were followed up for a mean of 54.5 months (31 to 66). The clinical results were evaluated using the Kujala score. There has been no recurrence of dislocation. All the patients have returned to full activities and the parents and children were satisfied with the clinical results. The mean Kujala score was 95.3 (88 to 98). Two patients had marginal skin necrosis which healed after debridement and secondary closure. These early results in this small group have shown that the ‘four-in-one’ procedure is effective in the treatment of obligatory dislocation of the patella in children with severe ligamentous laxity and trochlear aplasia.
Ensuring correct rotation of the femoral component
is a challenging aspect of patellofemoral replacement surgery. Rotation
equal to the epicondylar axis or marginally more external rotation
is acceptable. Internal rotation is associated with poor outcomes.
This paper comprises two studies evaluating the use of the medial
malleolus as a landmark to guide rotation. We used 100 lower-leg anteroposterior radiographs to evaluate
the reliability of the medial malleolus as a landmark. Assessment
was made of the angle between the tibial shaft and a line from the
intramedullary rod entry site to the medial malleolus. The femoral
cut was made in ten cadaver knees using the inferior tip of the
medial malleolus as a landmark for rotation. Rotation of the cut
relative to the anatomical epicondylar axis was assessed using CT.
The study of radiographs found the position of the medial malleolus
relative to the tibial axis is consistent. Using the inferior tip
of the medial malleolus in the cadaver study produced a mean external
rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar
axis. Using the inferior tip of the medial malleolus to guide the
femoral cutting jig avoids internal rotation and introduces an acceptable
amount of external rotation of the femoral component.