Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
Autologous chondrocyte implantation is an option in the treatment of full-thickness chondral or osteochondral injuries which are symptomatic. The goal of surgery and rehabilitation is the replacement of damaged cartilage with hyaline or hyaline-like cartilage, producing improved levels of function and preventing early osteoarthritis. The intermediate results have been promising in terms of functional and clinical improvement. Our aim was to explore the hypothesis that the histological quality of the repair tissue formed after autologous chondrocyte implantation improved with increasing time after implantation. In all, 248 patients who had undergone autologous chondrocyte implantation had biopsies taken of the repair tissue which then underwent histological grading. Statistical analysis suggested that with doubling of the time after implantation the likelihood of a favourable histological outcome was increased by more than fourfold (p <
0.001).
We investigated the early results of modular porous metal components used in 23 acetabular reconstructions associated with major bone loss. The series included seven men and 15 women with a mean age of 67 years (38 to 81), who had undergone a mean of two previous revisions (1 to 7). Based on Paprosky’s classification, there were 17 type 3A and six type 3B defects. Pelvic discontinuity was noted in one case. Augments were used in 21 hips to support the shell and an acetabular component-cage construct was implanted in one case. At a mean follow-up of 41 months (24 to 62), 22 components remained well fixed. Two patients required rerevision of the liners for prosthetic joint instability. Clinically, the mean Harris Hip Score improved from 43.0 pre-operatively (14 to 86) to 75.7 post-operatively (53 to 100). The mean pre-operative Merle d’Aubigné score was 8.2 (3 to 15) and improved to a mean of 13.7 (11 to 18) post-operatively. These short-term results suggest that modular porous metal components are a viable option in the reconstruction of Paprosky type 3 acetabular defects. More data are needed to determine whether the system yields greater long-term success than more traditional methods, such as reconstruction cages and structural allografts.
Ultra-high-molecular-weight polyethylene sterilised in the absence of air and highly cross-linked polyethylene have been used to avoid osteolysis and loosening in total hip replacement. Our prospective randomised study has assessed the results using two different polyethylenes associated with the same prosthetic design. We assessed 45 Allofit acetabular components with a Sulene-polyethylene liner of conventional polyethylene gamma sterilised with nitrogen and 45 Allofit acetabular components with a Durasul-polyethylene liner sterilised in ethylene oxide, both matched with an Alloclassic stem with a 28 mm modular femoral head. The prostheses were implanted between May 1999 and December 2001. The mean follow-up was for 66.3 months (60 to 92). The linear penetration of the femoral head was estimated at 6 weeks, at 6 and 12 months and annually thereafter from standardised digitised radiographs using image-analysis software. There was no loosening of any prosthetic component. There were no radiolucent lines or osteolysis. The mean rate of penetration calculated from regression analysis during the first five years was 38 μm/year (
In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two. Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.
The aim of this study was to re-assess whether the use of a ‘one-knife technique’ can be considered as safe as the alternative practice of using separate skin and inside knives for elective orthopaedic surgery. A total of 609 knife blades from 203 elective orthopaedic operations, with equal numbers of skin, inside and control blades, were cultured using direct and enrichment media. We found 31 skin blades (15.3%), 22 inside blades (10.8%), and 13 control blades (6.4%) gave bacterial growth. Of the 31 contaminated skin blades only three (9.7%) had growth of the same organism as found on the corresponding inside blade. It is not known whether contamination of deeper layers in the remaining 90% was prevented by changing the knife after the skin incision. The organisms cultured were predominantly coagulase-negative staphylococci and proprionibacterium species; both are known to be the major culprits in peri-prosthetic infection. Our study suggests that the use of separate skin and inside knives should be maintained as good medical practice, since the cost of a single deep infection in human and financial terms can be considerable.
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.
The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone.
An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically. Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes.
Between January 1998 and December 1998, 82 consecutive patients (86 hips) underwent total hip arthroplasty using a trabecular metal monoblock acetabular component. All patients had a clinical and radiological follow-up evaluation at six, 12 and 24 weeks, 12 months, and then annually thereafter. On the initial post-operative radiograph 25 hips had a gap between the outer surface of the component and the acetabular host bed which ranged from 1 to 5 mm. All patients were followed up clinically and radiologically for a mean of 7.3 years (7 to 7.5). The 25 hips with the 1 to 5 mm gaps were studied for component migration at two years using the Einzel-Bild-Roentgen-Analyse (EBRA) digital measurement method. At 24 weeks all the post-operative gaps were filled with bone and no acetabular component had migrated. The radiographic outcome of all 86 components showed no radiolucent lines and no evidence of lysis. No acetabular implant was revised. There were no dislocations or other complications. The bridging of the interface gaps (up to 5 mm) by the trabecular metal monoblock acetabular component indicates the strong osteoconductive, and possibly osteoinductive, properties of trabecular metal.
Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.