The mechanical performance of the cement-in-cement interface in revision surgery has not been fully investigated. The quantitative effect posed by interstitial fluids and roughening of the primary mantle remains unclear. We have analysed the strength of the bilaminar cement-bone interface after exposure of the surface of the primary mantle to roughening and fluid interference. The end surfaces of cylindrical blocks of cement were machined smooth (Ra = 200 nm) or rough (Ra = 5 μm) and exposed to either different volumes of water and carboxymethylcellulose (a bone-marrow equivalent) or left dry. Secondary blocks were cast against the modelled surface. Monoblocks of cement were used as a control group. The porosity of the samples was investigated using micro-CT. Samples were exposed to a single shearing force to failure. The mean failure load of the monoblock control was 5.63 kN (95% confidence interval (CI) 5.17 to 6.08) with an estimated shear strength of 36 MPa. When small volumes of any fluid or large volumes were used, the respective values fell between 4.66 kN and 4.84 kN with no significant difference irrespective of roughening (p >
0.05). Large volumes of carboxymethylcellulose significantly weakened the interface. Roughening in this group significantly increased the strength with failure loads of 2.80 kN (95% CI 2.37 to 3.21) compared with 0.86 kN (95% CI 0.43 to 1.27) in the smooth variant. Roughening of the primary mantle may not therefore be as crucial as has been previously thought in clinically relevant circumstances.
The Cementless Oxford Unicompartmental Knee Replacement
(OUKR) was developed to address problems related to cementation,
and has been demonstrated in a randomised study to have similar
clinical outcomes with fewer radiolucencies than observed with the
cemented device. However, before its widespread use it is necessary
to clarify contraindications and assess the complications. This
requires a larger study than any previously published. We present a prospective multicentre series of 1000 cementless
OUKRs in 881 patients at a minimum follow-up of one year. All patients
had radiological assessment aligned to the bone–implant interfaces
and clinical scores. Analysis was performed at a mean of 38.2 months
(19 to 88) following surgery. A total of 17 patients died (comprising
19 knees (1.9%)), none as a result of surgery; there were no tibial
or femoral loosenings. A total of 19 knees (1.9%) had significant
implant-related complications or required revision. Implant survival
at six years was 97.2%, and there was a partial radiolucency at
the bone–implant interface in 72 knees (8.9%), with no complete radiolucencies.
There was no significant increase in complication rate compared
with cemented fixation (p = 0.87), and no specific contraindications
to cementless fixation were identified. Cementless OUKR appears to be safe and reproducible in patients
with end-stage anteromedial osteoarthritis of the knee, with radiological
evidence of improved fixation compared with previous reports using
cemented fixation. Cite this article:
Fractures of the proximal femur are one of the
greatest challenges facing the medical community, constituting a
heavy socioeconomic burden worldwide. The National Hip Fracture
Audit currently provides a framework for service evaluation. This
evaluation is based upon the assessment of process rather than assessment
of patient-centred outcome and therefore it fails to provide meaningful
data regarding the clinical effectiveness of treatments. This study
aims to capture data from the cohort of patients who present with
a fracture of the proximal femur at a single United Kingdom Major
Trauma Centre. Patient-centred outcomes will be recorded and provide
a baseline cohort within which to test the clinical effectiveness
of experimental interventions.
Radiostereometric analysis (RSA) can detect early
micromovement in unstable implant designs which are likely subsequently
to have a high failure rate. In 2010, the Articular Surface Replacement
(ASR) was withdrawn because of a high failure rate. In 19 ASR femoral
components, the mean micromovement over the first two years after implantation
was 0.107 mm ( We conclude that the ASR femoral component achieves initial stability
and that early migration is not the mode of failure for this resurfacing
arthroplasty.
Orthopaedic surgeons use stems in revision knee surgery to obtain
stability when metaphyseal bone is missing. No consensus exists
regarding stem size or method of fixation. This A custom test rig using differential variable reluctance transducers
(DVRTs) was developed to record all translational and rotational
motions at the bone–implant interface. Composite femurs were used.
These were secured to permit variation in flexion angle from 0°
to 90°. Cyclic loads were applied through a tibial component based
on three peaks corresponding to 0°, 10° and 20° flexion from a normal
walking cycle. Three different femoral components were investigated
in this study for cementless and cemented interface conditions.Objectives
Methods
There are no recent studies comparing cable with
wire for the fixation of osteotomies or fractures in total hip replacement
(THR). Our objective was to evaluate the five-year clinical and
radiological outcomes and complication rates of the two techniques.
We undertook a review including all primary and revision THRs performed
in one hospital between 1996 and 2005 using cable or wire fixation.
Clinical and radiological evaluation was performed five years post-operatively.
Cables were used in 51 THRs and wires in 126, and of these, 36 THRs
with cable (71%) and 101 with wire (80%) were evaluated at follow-up.
The five-year radiographs available for 33 cable and 91 wire THRs
revealed rates of breakage of fixation of 12 of 33 (36%) and 42
of 91 (46%), respectively. With cable there was a significantly
higher risk of metal debris (68% In conclusion, we found a higher incidence of complications and
a trend towards increased infection and foreign-body reaction with
the use of cables.
Stems improve the mechanical stability of tibial
components in total knee replacement (TKR), but come at a cost of stress
shielding along their length. Their advantages include resistance
to shear, reduced tibial lift-off and increased stability by reducing
micromotion. Longer stems may have disadvantages including stress
shielding along the length of the stem with associated reduction
in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic
fracture and end-of-stem pain. These features make long stems unattractive
in the primary TKR setting, but often desirable in revision surgery
with bone loss and instability. In the revision scenario, stems
are beneficial in order to convey structural stability to the construct
and protect the reconstruction of bony defects. Cemented and uncemented
long stemmed implants have different roles depending on the nature
of the bone loss involved. This review discusses the biomechanics of the design of tibial
components and stems to inform the selection of the component and
the technique of implantation.
There is little information about the management
of peri-prosthetic fracture of the humerus after total shoulder replacement
(TSR). This is a retrospective review of 22 patients who underwent
a revision of their original shoulder replacement for peri-prosthetic
fracture of the humerus with bone loss and/or loose components.
There were 20 women and two men with a mean age of 75 years (61
to 90) and a mean follow-up 42 months (12 to 91): 16 of these had
undergone a previous revision TSR. Of the 22 patients, 12 were treated
with a long-stemmed humeral component that bypassed the fracture.
All their fractures united after a mean of 27 weeks (13 to 94).
Eight patients underwent resection of the proximal humerus with
endoprosthetic replacement to the level of the fracture. Two patients
were managed with a clam-shell prosthesis that retained the original
components. The mean Oxford shoulder score (OSS) of the original
TSRs before peri-prosthetic fracture was 33 (14 to 48). The mean
OSS after revision for fracture was 25 (9 to 31). Kaplan-Meier survival
using re-intervention for any reason as the endpoint was 91% (95%
confidence interval (CI) 68 to 98) and 60% (95% CI 30 to 80) at
one and five years, respectively. There were two revisions for dislocation of the humeral head,
one open reduction for modular humeral component dissociation, one
internal fixation for nonunion, one trimming of a prominent screw
and one re-cementation for aseptic loosening complicated by infection,
ultimately requiring excision arthroplasty. Two patients sustained
nerve palsies. Revision TSR after a peri-prosthetic humeral fracture associated
with bone loss and/or loose components is a salvage procedure that
can provide a stable platform for elbow and hand function. Good
rates of union can be achieved using a stem that bypasses the fracture.
There is a high rate of complications and function is not as good as
with the original replacement.
The increasing need for total hip replacement
(THR) in an ageing population will inevitably generate a larger number
of revision procedures. The difficulties encountered in dealing
with the bone deficient acetabulum are amongst the greatest challenges
in hip surgery. The failed acetabular component requires reconstruction
to restore the hip centre and improve joint biomechanics. Impaction
bone grafting is successful in achieving acetabular reconstruction
using both cemented and cementless techniques. Bone graft incorporation
restores bone stock whilst providing good component stability. We
provide a summary of the evidence and current literature regarding impaction
bone grafting using both cemented and cementless techniques in revision
THR. Cite this article:
Using a modern cementing technique, we implanted 22 stereolithographic polymeric replicas of the Charnley-Kerboul stem in 11 pairs of human cadaver femora. On one side, the replicas were cemented line-to-line with the largest broach. On the other, one-size undersized replicas were used (radial difference, 0.89 mm CT analysis showed that the line-to-line stems without distal centralisers were at least as well aligned and centered as undersized stems with a centraliser, but were surrounded by less cement and presented more areas of thin (<
2 mm) or deficient (<
1 mm) cement. These areas were located predominantly at the corners and in the middle and distal thirds of the stem. Nevertheless, in line-to-line stems, penetration of cement into cancellous bone resulted in a mean thickness of cement of 3.1 mm ( When Charnley-Kerboul stems are cemented line-to-line, good clinical results are observed because cement-deficient areas are limited and are frequently supported by cortical bone.
The aim of this study was to compare a third-generation
cementing procedure for glenoid components with a new technique
for cement pressurisation. In 20 pairs of scapulae, 20 keeled and
20 pegged glenoid components were implanted using either a third-generation
cementing technique (group 1) or a new pressuriser (group 2). Cement penetration
was measured by three-dimensional (3D) analysis of micro-CT scans.
The mean 3D depth of penetration of the cement was significantly
greater in group 2 (p <
0.001). The mean thickness of the cement
mantle for keeled glenoids was 2.50 mm (2.0 to 3.3) in group 1 and
5.18 mm (4.4 to 6.1) in group 2, and for pegged glenoids it was 1.72 mm
(0.9 to 2.3) in group 1 and 5.63 mm (3.6 to 6.4) in group 2. A cement
mantle <
2 mm was detected less frequently in group 2 (p <
0.001). Using the cement pressuriser the proportion of cement mantles
<
2 mm was significantly reduced compared with the third-generation
cementing technique.
The removal of all prosthetic material and a
two-stage revision procedure is the established standard management of
an infected total hip replacement (THR). However, the removal of
well-fixed femoral cement is time-consuming and can result in significant
loss of bone stock and femoral shaft perforation or fracture. We
report our results of two-stage revision THR for treating infection,
with retention of the original well-fixed femoral cement mantle
in 15 patients, who were treated between 1989 and 2002. Following
partial excision arthroplasty, patients received local and systemic
antibiotics and underwent reconstruction and re-implantation at
a second-stage procedure, when the infection had resolved. The mean follow-up of these 15 patients was 82 months (60 to
192). Two patients had positive microbiology at the second stage
and were treated with six weeks of appropriate antibiotics; one
of these developed recurrent infection requiring further revision.
Successful eradication of infection was achieved in the remaining
14 patients. We conclude that when two-stage revision is used for the treatment
of peri-prosthetic infection involving a THR, a well-fixed femoral
cement mantle can be safely left
We report the long-term results of revision total
hip replacement using femoral impaction allografting with both uncemented
and cemented Freeman femoral components. A standard design of component
was used in both groups, with additional proximal hydroxyapatite
coating in the uncemented group. A total of 33 hips in 30 patients received
an uncemented component and 31 hips in 30 patients a cemented component.
The mean follow-up was 9.8 years (2 to 17) in the uncemented group
and 6.2 years (1 to 11) in the cemented group. Revision procedures
(for all causes) were required in four patients (four hips) in the
uncemented group and in five patients (five hips) in the cemented
group. Harris hip scores improved significantly in both groups and
were maintained independently of the extent of any migration of
the femoral component within the graft or graft–cement mantle.
We analysed at a mean follow-up of 7.25 years the clinical and radiological outcome of 117 patients (125 knees) who had undergone a primary, cemented, modular Freeman-Samuelson total knee replacement. While the tibial and femoral components were cemented, the patellar component was uncemented. A surface-cementing technique was used to secure the tibial components. A total of 82 knees was available for radiological assessment. Radiolucent lines were seen in 41 knees (50%) and osteolytic lesions were seen in 13 knees (16%). Asymptomatic, rotational loosening of the patellar implant was seen in four patients and osteolysis was more common in patients with a patellar resurfacing. Functional outcome scores were available for 41 patients (41 knees, 35%) and the mean Western Ontario McMasters Universities score was 77.5 (
We report a case of spontaneous physeal growth arrest of the distal femur in a nine-year-old child with Ewing’s sarcoma of the proximal femur treated with chemotherapy and endoprosthetic replacement. Owing to the extent of disuse osteoporosis at the time of surgery, the entire intramedullary canal up to the distal femoral physis was filled with cement. Three years later, the femur remained at its pre-operative length of 19 cm. Pre-operative calculations of further growth failed to account for the growth arrest, and the initial expandable growing prosthesis inserted has been revised to a longer one in order to address the leg-length discrepancy. To our knowledge, this is the only reported case of distal femoral physeal growth arrest following cemented endoprosthetic replacement of the proximal femur.
We have reviewed 70 Harris-Galante uncemented acetabular components implanted as hybrid hip replacements with cemented stems between 1991 and 1995 in 53 patients whose mean age was 40 years (19 to 49). The mean follow-up was for 13.6 years (12 to 16) with no loss to follow-up. We assessed the patients both clinically and radiologically. The mean Oxford hip score was 20 (12 to 46) and the mean Harris hip score 81 (37 to 100) at the final review. Radiologically, 27 hips (39%) had femoral osteolysis, 13 (19%) acetabular osteolysis, and 31 (44%) radiolucent lines around the acetabular component. Kaplan-Meier survival curves were constructed for the outcomes of revision of the acetabular component, revision of the component and polyethylene liner, and impending revision for progressive osteolysis. The cumulative survival for revision of the acetabular component was 94% (95% confidence interval 88.4 to 99.7), for the component and liner 84% (95% confidence interval 74.5 to 93.5) and for impending revision 55.3% (95% confidence interval 40.6 to 70) at 16 years. Uncemented acetabular components with polyethylene liners undergo silent lysis and merit regular long-term radiological review.
High-flexion total knee replacement (TKR) designs
have been introduced to improve flexion after TKR. Although the
early results of such designs were promising, recent literature
has raised concerns about the incidence of early loosening of the
femoral component. We compared the minimum force required to cause
femoral component loosening for six high-flexion and six conventional
TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed
in a loading frame in 135° of flexion. Loosening of the femoral
component was induced by moving the tibial component at a constant
rate of displacement while maintaining the same angle of flexion.
A stereophotogrammetric system registered the relative movement
between the femoral component and the underlying bone until loosening
occurred. Compared with high-flexion designs, conventional TKR designs
required a significantly higher force before loosening occurred
(p <
0.001). High-flexion designs with closed box geometry required
significantly higher loosening forces than high-flexion designs
with open box geometry (p = 0.0478). The presence of pegs further contributed
to the fixation strength of components. We conclude that high-flexion designs have a greater risk for
femoral component loosening than conventional TKR designs. We believe
this is attributable to the absence of femoral load sharing between
the prosthetic component and the condylar bone during flexion.
We conducted a systematic review and meta-analysis
of randomised controlled trials evaluating the effect of tranexamic
acid (TXA) upon blood loss and transfusion in primary total knee
replacement. The review used the generic evaluation tool designed
by the Cochrane Bone, Joint and Muscle Trauma Group. A total of
19 trials were eligible: 18 used intravenous administration, one
also evaluated oral dosing and one trial evaluated topical use.
TXA led to a significant reduction in the proportion of patients
requiring blood transfusion (risk ratio (RR) 2.56, 95% confidence
interval (CI) 2.1 to 3.1, p <
0.001; heterogeneity I2 =
75%; 14 trials, 824 patients). Using TXA also reduced total blood
loss by a mean of 591 ml (95% CI 536 to 647, p <
0.001; I2 =
78%; nine trials, 763 patients). The clinical interpretation of
these findings is limited by substantial heterogeneity. However,
subgroup analysis of high-dose (>
4 g) TXA showed a plausible consistent
reduction in blood transfusion requirements (RR 5.33; 95% CI 2.44
to 11.65, p <
0.001; I2 = 0%), a finding that should
be confirmed by a further well-designed trial. The current evidence
from trials does not support an increased risk of deep-vein thrombosis
(13 trials, 801 patients) or pulmonary embolism (18 trials, 971
patients) due to TXA administration.
In developing countries locally-made low-cost prostheses are mainly used in limb-salvage surgery to alleviate the economic burden. We retrospectively collected data on 104 patients treated by limb-salvage surgery between July 1997 and July 2005. We used a locally-designed and fabricated stainless-steel endoprosthesis in each case. Oncological and functional outcomes were evaluated at a mean follow-up of 47 months (12 to 118). A total of 73 patients (70.2%) were free from disease, nine (8.7%) were alive with disease, 19 (18.2%) had died from their disease and three (2.9%) from unrelated causes. According to the Musculoskeletal Tumor Society scoring system, the mean functional score was 76.3% (SD 17.8). The five-year survival for the implant was 70.5%. There were nine cases (8.7%) of infection, seven early and two late, seven (6.7%) of breakage of the prosthesis, three (2.9%) of aseptic loosening and two (1.9%) of failure of the polyethylene bushing. Multivariate analysis showed that a proximal tibial prosthesis and a resection length of 14 cm or more were significant negative prognostic factors. Our survival rates and Musculoskeletal Tumor Society functional scores are similar to those reported in the literature. Although longer follow-up is needed to confirm our results, we believe that a low-cost custom-made endoprosthesis is a cost-effective and reliable reconstructive option for limb salvage in developing countries.