The December 2024 Trauma Roundup360 looks at: Percutaneous lumbopelvic fixation is effective in the management of unstable transverse sacral fractures; A systematic review on autologous matrix-induced chondrogenesis (AMIC) for chondral knee defects; Stable clinical and radiological outcomes at medium and over five-year follow-up of calcaneus fracture open reduction internal fixation using a sinus tarsi approach; Right or left? It might make a difference; Suprapatellar versus infrapatellar tibial nailing – is there a difference in anterior knee pain and function?; Can patients safely weightbear following ankle fracture fixation?; Anterior-to-posterior or a plate fixation for posterior malleous fractures?; Audio distraction for traction pin insertion: a prospective randomized controlled study; Is intramedullary nailing of femoral diaphyseal fractures in the lateral decubitus position as safe and effective as on a traction table?
Posterior malleolar (PM) fractures are commonly associated with ankle fractures, pilon fractures, and to a lesser extent tibial shaft fractures. The tibialis posterior (TP) tendon entrapment is a rare complication associated with PM fractures. If undiagnosed, TP entrapment is associated with complications, ranging from reduced range of ankle movement to instability and pes planus deformities, which require further surgeries including radical treatments such as arthrodesis. The inclusion criteria applied in PubMed, Scopus, and Medline database searches were: all adult studies published between 2012 and 2022; and studies written in English. Outcome of TP entrapment in patients with ankle injuries was assessed by two reviewers independently.Aims
Methods
A local injection may be used as an early option in the treatment of Morton’s neuroma, and can be performed using various medications. The aim of this study was to compare the effects of injections of hyaluronic acid compared with corticosteroid in the treatment of this condition. A total of 91 patients were assessed for this trial, of whom 45 were subsequently included and randomized into two groups. One patient was lost to follow-up, leaving 22 patients (24 feet) in each group. The patients in the hyaluronic acid group were treated with three ultrasound-guided injections (one per week) of hyaluronic acid (Osteonil Plus). Those in the corticosteroid group were treated with three ultrasound-guided injections (also one per week) of triamcinolone (Triancil). The patients were evaluated before treatment and at one, three, six, and 12 months after treatment. The primary outcome measure was the visual analogue scale for pain (VAS). Secondary outcome measures included the American Orthopaedic Foot and Ankle Society (AOFAS) score, and complications.Aims
Methods
This study aims to evaluate the impact of metabolic syndrome in the setting of obesity on in-hospital outcomes and resource use after total joint replacement (TJR). A retrospective analysis was conducted using the National Inpatient Sample from 2006 to the third quarter of 2015. Discharges representing patients aged 40 years and older with obesity (BMI > 30 kg/m2) who underwent primary TJR were included. Patients were stratified into two groups with and without metabolic syndrome. The inverse probability of treatment weighting (IPTW) method was used to balance covariates.Aims
Methods
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article:
We investigated the prevalence of late developmental dysplasia of the hip (DDH), abduction bracing treatment, and surgical procedures performed following the implementation of universal ultrasound screening versus selective ultrasound screening programmes. A systematic search of PubMed, Embase, The Cochrane Library, OrthoSearch, and Web of Science from the date of inception of each database until 27 March 2022 was performed. The primary outcome of interest was the prevalence of late detection of DDH, diagnosed after three months. Secondary outcomes of interest were the prevalence of abduction bracing treatment and surgical procedures performed in childhood for dysplasia. Only studies describing the primary outcome of interest were included.Aims
Methods
Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects.Aims
Methods
To identify the incidence and risk factors for five-year same-site recurrent disc herniation (sRDH) after primary single-level lumbar discectomy. Secondary outcome was the incidence and risk factors for five-year sRDH reoperation. A retrospective study was conducted using prospectively collected data and patient-reported outcome measures, including the Oswestry Disability Index (ODI), between 2008 and 2019. Postoperative sRDH was identified from clinical notes and the centre’s MRI database, with all imaging providers in the region checked for missing events. The Kaplan-Meier method was used to calculate five-year sRDH incidence. Cox proportional hazards model was used to identify independent variables predictive of sRDH, with any variable not significant at the p < 0.1 level removed. Hazard ratios (HRs) were calculated with 95% confidence intervals (CIs).Aims
Methods
Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA. After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry.Aims
Methods
To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.Aims
Methods
The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.Aims
Methods
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article:
Bovine and human articular chondrocytes were seeded in 2% alginate constructs and cultured for up to 19 days in a rotating-wall-vessel (RWV) and under static conditions. Culture within the RWV enhanced DNA levels for bovine chondrocyte-seeded constructs when compared with static conditions but did not produce enhancement for human cells. There was a significant enhancement of glycosaminoglycans and hydroxyproline synthesis for both bovine and human chondrocytes. In all cases, histological analysis revealed enhanced Safranin-O staining in the peripheral regions of the constructs compared with the central region. There was an overall increase in staining intensity after culture within the RWV compared with static conditions. Type-II
Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of Aims
Methods
Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown. We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators.Aims
Methods
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
We have performed a prospective, single-surgeon study analysing the histological results of autologous chondrocyte implantation. Fourteen patients underwent autologous chondrocyte implantation of the knee and were evaluated at one year by clinical assessment and arthroscopy. Standard staining was used to examine the sections. In addition, in situ hybridisation was used to establish type-IIa and type-IIb
We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I
The December 2022 Shoulder & Elbow Roundup360 looks at: Biceps tenotomy versus soft-tissue tenodesis in females aged 60 years and older with rotator cuff tears; Resistance training combined with corticosteroid injections or tendon needling in patients with lateral elbow tendinopathy; Two-year functional outcomes of completely displaced midshaft clavicle fractures in adolescents; Patients who undergo rotator cuff repair can safely return to driving at two weeks postoperatively; Are two plates better than one? A systematic review of dual plating for acute midshaft clavicle fractures; Treatment of acute distal biceps tendon ruptures; Rotator cuff tendinopathy: disability associated with depression rather than pathology severity; Coonrad-Morrey total elbow arthroplasty implications in young patients with post-traumatic sequelae.
Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay.Aims
Methods