The December 2014 Foot &
Ankle Roundup360 looks at: Charcot feet, biomarkers and diabetes; weight bearing following Achilles tendon rupture; endobuttons and mal-reduced diastasis; evidence for stem cell therapies in osteochondral lesions of the talus; syndesmosis fixation in SER ankle fractures; and self-reporting for foot and ankle outcomes.
Vascularised fibular grafts (VFGs ) are a valuable
surgical technique in limb salvage after resection of a tumour.
The primary objective of this multicentre study was to assess the
risk factors for failure and complications for using a VFG after
resection of a tumour. The study involved 74 consecutive patients (45 men and 29 women
with mean age of 23 years (1 to 64) from four tertiary centres for
orthopaedic oncology who underwent reconstruction using a VFG after
resection of a tumour between 1996 and 2011. There were 52 primary
and 22 secondary reconstructions. The mean follow-up was 77 months
(10 to 195). In all, 69 patients (93%) had successful limb salvage; all of
these united and 65 (88%) showed hypertrophy of the graft. The mean
time to union differed between those involving the upper (28 weeks;
12 to 96) and lower limbs (44 weeks; 12 to 250). Fracture occurred
in 11Â (15%), and nonunion in 14 (19%) patients. In 35 patients (47%) at least one complication arose, with a
greater proportion in lower limb reconstructions, non-bridging osteosynthesis,
and in children. These complications resulted in revision surgery
in 26 patients (35%). VFG is a successful and durable technique for reconstruction
of a defect in bone after resection of a tumour, but is accompanied
by a significant risk of complications, that often require revision
surgery. Union was not markedly influenced by the need for chemo-
or radiotherapy, but should not be expected during chemotherapy.
Therefore, restricted weight-bearing within this period is advocated. Cite this article:
The purpose of this study was to evaluate A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted
subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm
PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight
and 12 weeks post-implantation were compared with control (Sham)
and PLAGA (five rats per group/point in time). Rats were observed
for signs of morbidity, overt toxicity, weight gain and food consumption,
while haematology, urinalysis and histopathology were completed
when the animals were killed.Objectives
Methods
There is increasing application of bone morphogenetic proteins
(BMPs) owing to their role in promoting fracture healing and bone
fusion. However, an optimal delivery system has yet to be identified.
The aims of this study were to synthesise bioactive BMP-2, combine
it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide)
(α-TCP/PLGA) nanocomposite and study its release from the composite. BMP-2 was synthesised using an Objectives
Methods
Cartilage defects of the hip cause significant
pain and may lead to arthritic changes that necessitate hip replacement.
We propose the use of fresh osteochondral allografts as an option
for the treatment of such defects in young patients. Here we present
the results of fresh osteochondral allografts for cartilage defects
in 17 patients in a prospective study. The underlying diagnoses
for the cartilage defects were osteochondritis dissecans in eight
and avascular necrosis in six. Two had Legg-Calve-Perthes and one
a femoral head fracture. Pre-operatively, an MRI was used to determine
the size of the cartilage defect and the femoral head diameter.
All patients underwent surgical hip dislocation with a trochanteric
slide osteotomy for placement of the allograft. The mean age at
surgery was 25.9 years (17 to 44) and mean follow-up was 41.6 months
(3 to 74). The mean Harris hip score was significantly better after
surgery (p <
0.01) and 13 patients had fair to good outcomes.
One patient required a repeat allograft, one patient underwent hip
replacement and two patients are awaiting hip replacement. Fresh
osteochondral allograft is a reasonable treatment option for hip
cartilage defects in young patients. Cite this article:
We are currently facing an epidemic of periprosthetic
fractures around the hip. They may occur either during surgery or
post-operatively. Although the acetabulum may be involved, the femur
is most commonly affected. We are being presented with new, difficult
fracture patterns around cemented and cementless implants, and we
face the challenge of an elderly population who may have grossly
deficient bone and may struggle to rehabilitate after such injuries.
The correct surgical management of these fractures is challenging.
This article will review the current choices of implants and techniques
available to deal with periprosthetic fractures of the femur. Cite this article:
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
The February 2014 Foot &
Ankle Roundup360 looks at: optimal medial malleolar fixation; resurfacing in the talus; predicting outcome in mobility ankles; whether mal-aligned ankles can be successfully replaced; cartilage colonisation in bipolar ankle grafts; CTs and proof of fusion; recalcitrant Achilles tendinopathy; and recurrent fifth metatarsal stress fractures.
We retrospectively reviewed 44 consecutive patients
(50 hips) who underwent acetabular re-revision after a failed previous
revision that had been performed using structural or morcellised
allograft bone, with a cage or ring for uncontained defects. Of
the 50 previous revisions, 41 cages and nine rings were used with
allografts for 14 minor-column and 36Â major-column defects. We routinely
assessed the size of the acetabular bone defect at the time of revision
and re-revision surgery. This allowed us to assess whether host
bone stock was restored. We also assessed the outcome of re-revision
surgery in these circumstances by means of radiological characteristics,
rates of failure and modes of failure. We subsequently investigated
the factors that may affect the potential for the restoration of bone
stock and the durability of the re-revision reconstruction using
multivariate analysis. At the time of re-revision, there were ten host acetabula with
no significant defects, 14Â with contained defects, nine with minor-column,
seven with major-column defects and ten with pelvic discontinuity.
When bone defects at re-revision were compared with those at the
previous revision, there was restoration of bone stock in 31 hips, deterioration
of bone stock in nine and remained unchanged in ten. This was a
significant improvement (p <
 0.001). Morselised allografting
at the index revision was not associated with the restoration of
bone stock. In 17 hips (34%), re-revision was possible using a simple acetabular
component without allograft, augments, rings or cages. There were
47 patients with a mean follow-up of 70Â months (6 to 146) available
for survival analysis. Within this group, the successful cases had
a minimum follow-up of two years after re-revision. There were 22 clinical
or radiological failures (46.7%), 18 of which were due to aseptic
loosening. The five and ten year Kaplan–Meier survival rate was
75% (95% CI, 60 to 86) and 56% (95% CI, 40 to 70) respectively with
aseptic loosening as the endpoint. The rate of aseptic loosening
was higher for hips with pelvic discontinuity (p = 0.049) and less
when the allograft had been in place for longer periods (p = 0.040). The use of a cage or ring over structural allograft bone for
massive uncontained defects in acetabular revision can restore host
bone stock and facilitate subsequent re-revision surgery to a certain
extent. Cite this article:
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as autologous osteochondral transplantation, or
autologous chondrocyte implantation are the major forms of surgical
treatment. Current literature suggests that microfracture is indicated
for lesions up to 15 mm in diameter, with replacement strategies
indicated for larger or cystic lesions. Short- and medium-term results
have been reported, where concerns over potential deterioration
of fibrocartilage leads to a need for long-term evaluation. Biological augmentation may also be used in the treatment of
OCLs, as they potentially enhance the biological environment for
a natural healing response. Further research is required to establish
the critical size of defect, beyond which replacement strategies
should be used, as well as the most appropriate use of biological augmentation.
This paper reviews the current evidence for surgical management
and use of biological adjuncts for treatment of osteochondral lesions
of the talus. Cite this article:
Fibrin glue, also known as fibrin sealant, is now established as a haemostatic agent in surgery, but its role in orthopaedic surgery is neither well known nor clearly defined. Although it was originally used over 100 years ago, concerns about transmission of disease meant that it fell from favour. It is also available as a slow-release drug delivery system and as a substrate for cellular growth and tissue engineering. Consequently, it has the potential to be used in a number of ways in orthopaedic surgery. The purpose of this review is to address its use in surgery of the knee in which it appears to offer great promise.
The February 2014 Research Roundup360 looks at: blood supply to the femoral head after dislocation; diabetes and hip replacement; bone remodelling over two decades following hip replacement; sham surgery as good as arthroscopic meniscectomy; distraction in knee osteoarthritis; whether joint replacement prevent cardiac events; tranexamic acid and knee replacement haemostasis; cartilage colonisation in bipolar ankle grafts; CTs and proof of fusion; atorvastatin for muscle re-innervation after sciatic nerve transection; microfracture and short-term pain in cuff repair; promising early results from L-PRF augmented cuff repairs; and fatty degeneration in a rodent model.
The June 2013 Foot &
Ankle Roundup360 looks at: soft-tissue pain following arthroplasty; pigmented villonodular synovitis of the foot and ankle; ankles, allograft and arthritis; open calcaneal fracture; osteochondral lesions in the longer term; severe infections in diabetic feet; absorbable first ray fixation; and showering after foot surgery.
Autologous chondrocyte implantation (ACI) is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We have performed a prospective, randomised comparison of ACI-C and MACI for the treatment of symptomatic chondral defects of the knee in 91 patients, of whom 44 received ACI-C and 47 MACI grafts. Both treatments resulted in improvement of the clinical score after one year. The mean modified Cincinnati knee score increased by 17.6 in the ACI-C group and 19.6 in the MACI group (p = 0.32). Arthroscopic assessments performed after one year showed a good to excellent International Cartilage Repair Society score in 79.2% of ACI-C and 66.6% of MACI grafts. Hyaline-like cartilage or hyaline-like cartilage with fibrocartilage was found in the biopsies of 43.9% of the ACI-C and 36.4% of the MACI grafts after one year. The rate of hypertrophy of the graft was 9% (4 of 44) in the ACI-C group and 6% (3 of 47) in the MACI group. The frequency of re-operation was 9% in each group. We conclude that the clinical, arthroscopic and histological outcomes are comparable for both ACI-C and MACI. While MACI is technically attractive, further long-term studies are required before the technique is widely adopted.
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.
Modern athletes are constantly susceptible to performance-threatening injury as they push their bodies to greater limits and endure higher physical stresses. Loss of performance and training time can adversely and permanently affect a sportsperson’s career. Now more than ever with advancing medical technology the answer may lie in biologic therapy. We have been using peripheral blood stem cells (PBSC) clinically and have been able to demonstrate that stem cells differentiate into target cells to enable regenerative repair. The potential of this technique as a regenerative agent can be seen in three broad applications: 1) articular cartilage, 2) bone and 3) soft tissue. This article highlights the successful cases, among many, in all three of these applications.
The aim of our study was to investigate the effect of platelet-rich plasma on the proliferation and differentiation of rat bone-marrow cells and to determine an optimal platelet concentration in plasma for osseous tissue engineering. Rat bone-marrow cells embedded in different concentrations of platelet-rich plasma gel were cultured for six days. Their potential for proliferation and osteogenic differentiation was analysed. Using a rat limb-lengthening model, the cultured rat bone-marrow cells with platelet-rich plasma of variable concentrations were transplanted into the distraction gap and the quality of the regenerate bone was evaluated radiologically. Cellular proliferation was enhanced in all the platelet-rich plasma groups in a dose-dependent manner. Although no significant differences in the production and mRNA expression of alkaline phosphatase were detected among these groups, mature bone regenerates were more prevalent in the group with the highest concentration of platelets. Our results indicate that a high platelet concentration in the platelet-rich plasma in combination with osteoblastic cells could accelerate the formation of new bone during limb-lengthening procedures.