The aim of this study was to review the impact of smoking tobacco on the musculoskeletal system, and on bone fractures in particular. English-language publications of human and animal studies categorizing subjects into smokers and nonsmokers were sourced from MEDLINE, The Cochrane Library, and SCOPUS. This review specifically focused on the risk, surgical treatment, and prevention of fracture complications in smokers.Objectives
Methods
Re-rupture is common after primary flexor tendon repair. Characterization of the biological changes in the ruptured tendon stumps would be helpful, not only to understand the biological responses to the failed tendon repair, but also to investigate if the tendon stumps could be used as a recycling biomaterial for tendon regeneration in the secondary grafting surgery. A canine flexor tendon repair and failure model was used. Following six weeks of repair failure, the tendon stumps were analyzed and characterized as isolated tendon-derived stem cells (TDSCs).Objectives
Methods
The aim of this study was to describe the technique of distraction
osteogenesis followed by arthrodesis using internal fixation to
manage complex conditions of the ankle, and to present the results
of this technique. Between 2008 and 2014, distraction osteogenesis followed by arthrodesis
using internal fixation was performed in 12 patients with complex
conditions of the ankle due to trauma or infection. There were eight
men and four women: their mean age was 35 years (23 to 51) at the
time of surgery. Bone healing and functional recovery were evaluated
according to the criteria described by Paley. Function was assessed
using the ankle-hindfoot scale of the American Orthopedic Foot and
Ankle Society (AOFAS).Aims
Patients and Methods
Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the The Objectives
Methods
1 . The magnitude of the problem of congenital anomalies becomes evident when one takes into consideration the fact that they cause the death of approximately one quarter of the human race either before or shortly after birth, and handicap an appreciable proportion of the survivors throughout their lives. Further, a significant percentage of infants judged to be normal at birth are found in later life to suffer from "disguised" anomalies of the skeleton and soft tissues. Though the study of genetic factors leading to congenital defects has attracted a great deal of attention during the last few decades, the importance of environmental causes of human malformations has received relatively less emphasis. The association of congenital anomalies such as cataract and cardiac septal defects with maternal intercurrent infection of rubella during the early months of pregnancy demonstrates clearly that changes in the germplasm cannot always be invoked as the cause of developmental abnormalities. Congenital malformations that are sometimes genetically determined, such as microphthalmos, cleft palate, and certain skeletal abnormalities, can be caused in the offspring not only by maternal nutritional deficiencies and x-radiation but also, at least in some animals, such as chickens, rats and rabbits, by the introduction of certain substances like insulin into the environment of the embryo during its development. 2. Since very little is known of the detailed histology of the early human embryo, the histological examination of cases of perverted growth is mainly limited to aborted foetuses which, unfortunately, tend to present varying degrees of post-mortem degeneration before accurate histological methods can be applied. It is exactly in this field that animal experiments can offer valuable help. According to Mall and other embryologists the pathological changes that take place in human foetuses and those obtained experimentally in animals are not merely "analogous or similar but identical.". 3. An attempt has been made to review, in some detail, the more important work which has been carried out on experimental teratogenesis, on the epidemiological implications of developmental arrests in humans, and on foetal abnormalities associated with maternal metabolic and hormonal disorders during pregnancy. 4. The technique employed for injection of insulin into the egg yolk has been described. Methods used for the estimation of blood sugar in chick embryos at various stages after injection of insulin and special histochemical techniques for localising polysaccharides in cartilage have been outlined. 5. A few salient experimental results have been tabulated, and some of the insulin-induced abnormalities have been illustrated. 6. The possible mechanism of action of insulin in the causation of the various developmental anomalies has been discussed. Broadly speaking, insulin seems to affect primarily the part or tissue which is in the most active stage of growth or differentiation at the time of the injection. Within the range of 0·05 to 6 units of insulin employed, the incidence, severity and distribution of the deformities appear to increase with the dose of the hormone. It has been observed that the hypoglycaemia caused by insulin injection is not counteracted till about the twelfth day of incubation, presumably because of excessive accumulation of glycogen in the yolk-sac membrane immediately after the injection, and because of lack of glycogen storage in the embryonic liver and the absence of active secretion in the endocrine glands concerned with the carbohydrate metabolism of the embryo. It has been suggested that this unchecked hypoglycaemia may deprive the mesenchyme, pre-cartilage and cartilage of glycogen and mucopolysaccharides (chondroiten-sulphuric acid complexes), depending on the time of injection and the dose of insulin, and thus not only give rise to a variety of single and multiple deformities in the cartilaginous skeleton but also interfere with the normal endochondral ossification, resulting in a generalised developmental disturbance of bone resembling
Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done. We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.Objectives
Methods
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.Objectives
Methods
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from
Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Ten-week-old male C56/Bl6J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop.Objectives
Methods
This systematic review aimed to assess the A systematic search was performed in Pubmed, followed by a two-step selection process. We included Objectives
Methods
The aim of this double-blind prospective randomised controlled
trial was to assess whether low intensity pulsed ultrasound (LIPUS)
accelerated or enhanced the rate of bone healing in adult patients
undergoing distraction osteogenesis. A total of 62 adult patients undergoing limb lengthening or bone
transport by distraction osteogenesis were randomised to treatment
with either an active (n = 32) or a placebo (n = 30) ultrasound
device. A standardised corticotomy was performed in the proximal
tibial metaphysis and a circular Ilizarov frame was used in all
patients. The rate of distraction was also standardised. The primary
outcome measure was the time to removal of the frame after adjusting
for the length of distraction in days/cm for both the per protocol
(PP) and the intention-to-treat (ITT) groups. The assessor was blinded
to the form of treatment. A secondary outcome was to identify covariates affecting
the time to removal of the frame.Aims
Patients and Methods
Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays.Objectives
Methods
Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.Objectives
Methods
The management of a significant bony defect following excision
of a diaphyseal atrophic femoral nonunion remains a challenge. We
present the outcomes using a combined technique of acute femoral
shortening, stabilized with a long retrograde intramedullary nail,
accompanied by bifocal osteotomy compression and distraction osteogenesis with
a temporary monolateral fixator. Eight men and two women underwent the ‘rail and nail’ technique
between 2008 and 2016. Proximal locking of the nail and removal
of the external fixator was undertaken once the length of the femur
had been restored and prior to full consolidation of the regenerate.Aims
Patients and Methods
Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures. Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational device exemption (IDE) study: a Objectives
Methods
The development and pre-clinical evaluation of
nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated
with titanium dioxide (TiO2) nanotube arrays is reviewed. Cite this article:
Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in
The primary purpose of this meta-analysis was to determine whether statin usage could reduce the risk of glucocorticoid-related osteonecrosis in animal models. A systematic literature search up to May 2015 was carried out using the PubMed, Ovid, EBM reviews, ISI Web of Science, EBSCO, CBM, CNKI databases with the term and boolean operators: statins and osteonecrosis in all fields. Risk ratio (RR), as the risk estimate of specific outcome, was calculated along with 95% confidence intervals (CI). The methodological quality of individual studies was assessed using a quantitative tool based on the updated Stroke Therapy Academic Industry Roundtable (STAIR) recommendations.Objectives
Methods