Advertisement for orthosearch.org.uk
Results 1 - 100 of 180
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1311 - 1318
3 Oct 2020
Huang Y Gao Y Li Y Ding L Liu J Qi X

Aims. Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis. Methods. A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis. Results. The ASIS on the dislocated side was located inferiorly and anteriorly compared to the healthy side (coordinates on the y-axis and z-axis; p = 0.001; p = 0.031). The centre of hip rotation on the dislocated side was located inferiorly and medially compared to the healthy side (coordinates on the x-axis and the y-axis; p < 0.001; p = 0.003). The affected hemipelvis tilted anteriorly in the sagittal plane (mean 8.05° (SD 3.57°)), anteriorly rotated in the transverse plane (mean 3.31° (SD 1.41°)), and tilted obliquely and caudally in the coronal plane (mean 2.04° (SD 0.81°)) relative to the healthy hemipelvis. The affected hemipelvis was significantly smaller in the length, width, height, and volume than the healthy counterpart. (p = 0.014; p = 0.009; p = 0.035; p = 0.002). Conclusion. Asymmetric abnormalities were identified on the affected hemipelvis in patients with the unilateral Crowe-IV DDH using 3D imaging techniques. Improved understanding of the morphological changes may influence the positioning of the acetabular component at THA. Acetabular component malpositioning errors caused by anterior tilt of the affected hemi pelvis and the abnormal position of the affected side centre of rotation should be considered by orthopaedic surgeons when undertaking THA in patients with Crowe-IV DDH. Cite this article: Bone Joint J 2020;102-B(10):1311–1318


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 977 - 982
1 Jul 2013
Wu AM Tian NF Wu LJ He W Ni WF Wang XY Xu HZ Chi YL

The purpose of this study was to determine whether it would be feasible to use oblique lumbar interbody fixation for patients with degenerative lumbar disease who required a fusion but did not have a spondylolisthesis. A series of CT digital images from 60 patients with abdominal disease were reconstructed in three dimensions (3D) using Mimics v10.01: a digital cylinder was superimposed on the reconstructed image to simulate the position of an interbody screw. The optimal entry point of the screw and measurements of its trajectory were recorded. Next, 26 cadaveric specimens were subjected to oblique lumbar interbody fixation on the basis of the measurements derived from the imaging studies. These were then compared with measurements derived directly from the cadaveric vertebrae. Our study suggested that it is easy to insert the screws for L1/2, L2/3 and L3/4 fixation: there was no significant difference in measurements between those of the 3-D digital images and the cadaveric specimens. For L4/5 fixation, part of L5 inferior articular process had to be removed to achieve the optimal trajectory of the screw. For L5/S1 fixation, the screw heads were blocked by iliac bone: consequently, the interior oblique angle of the cadaveric specimens was less than that seen in the 3D digital images. . We suggest that CT scans should be carried out pre-operatively if this procedure is to be adopted in clinical practice. This will assist in determining the feasibility of the procedure and will provide accurate information to assist introduction of the screws. Cite this article: Bone Joint J 2013;95-B:977–82


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article: Bone Joint J 2024;106-B(9):892–897


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims. The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. Methods. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties. Results. Our results indicated that bone mass was reduced and bone mechanical properties were impaired in DIO mice. Lipidomic sequencing and bioinformatic analysis identified 373 differential lipids, 176 of which were upregulated and 197 downregulated. Functional enrichment analysis revealed a significant downregulation of the pathways: fat digestion and absorption (ko04975) and lipolysis regulation in adipocytes (ko04923) in DIO mice, leading to local fat accumulation. The use of 3D imaging confirmed the increase in fat accumulation within the bone marrow cavity of obese mice. Conclusion. Our study sheds light on the intricate interplay between fat and bone, and provides a non-toxic and non-invasive method for measuring marrow adipose tissue. Cite this article: Bone Joint Res 2023;12(9):580–589


Bone & Joint Open
Vol. 3, Issue 2 | Pages 114 - 122
1 Feb 2022
Green GL Arnander M Pearse E Tennent D

Aims. Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility. Methods. A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed. Results. A total of 25 studies were initially eligible. Following screening, nine papers were included for review. Main themes identified compared 2D and 3D imaging, as well as linear- compared with area-based techniques. Heterogenous data were acquired, and therefore no meta-analysis was performed. Conclusion. No ideal CT-based method is demonstrated in the current literature, however evidence suggests that surface area methods are more reproducible and lead to fewer over-estimations of bone loss, provided the views used are standardized. A prospective imaging trial is required to provide a more definitive answer to this research question. Cite this article: Bone Jt Open 2022;3(2):114–122


Bone & Joint Research
Vol. 8, Issue 10 | Pages 459 - 468
1 Oct 2019
Hotchen AJ Dudareva M Ferguson JY Sendi P McNally MA

Objectives. The aim of this study was to assess the clinical application of, and optimize the variables used in, the BACH classification of long-bone osteomyelitis. Methods. A total of 30 clinicians from a variety of specialities classified 20 anonymized cases of long-bone osteomyelitis using BACH. Cases were derived from patients who presented to specialist centres in the United Kingdom between October 2016 and April 2017. Accuracy and Fleiss’ kappa (Fκ) were calculated for each variable. Bone involvement (B-variable) was assessed further by nine clinicians who classified ten additional cases of long bone osteomyelitis using a 3D clinical imaging package. Thresholds for defining multidrug-resistant (MDR) isolates were optimized using results from a further analysis of 253 long bone osteomyelitis cases. Results. The B-variable had a classification accuracy of 77.0%, which improved to 95.7% when using a 3D clinical imaging package (p < 0.01). The A-variable demonstrated difficulty in the accuracy of classification for increasingly resistant isolates (A1 (non-resistant), 94.4%; A2 (MDR), 46.7%; A3 (extensively or pan-drug-resistant), 10.0%). Further analysis demonstrated that isolates with four or more resistant test results or less than 80% sensitive susceptibility test results had a 98.1% (95% confidence interval (CI) 96.6 to 99.6) and 98.8% (95% CI 98.1 to 100.0) correlation with MDR status, respectively. The coverage of the soft tissues (C-variable) and the host status (H-variable) both had a substantial agreement between users and a classification accuracy of 92.5% and 91.2%, respectively. Conclusions. The BACH classification system can be applied accurately by users with a variety of clinical backgrounds. Accuracy of B-classification was improved using 3D imaging. The use of the A-variable has been optimized based on susceptibility testing results. Cite this article: A. J. Hotchen, M. Dudareva, J. Y. Ferguson, P. Sendi, M. A. McNally. The BACH classification of long bone osteomyelitis. Bone Joint Res 2019;8:459–468. DOI: 10.1302/2046-3758.810.BJR-2019-0050.R1


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 365 - 370
1 Mar 2020
Min KS Fox HM Bedi A Walch G Warner JJP

Aims. Patient-specific instrumentation has been shown to increase a surgeon’s precision and accuracy in placing the glenoid component in shoulder arthroplasty. There is, however, little available information about the use of patient-specific planning (PSP) tools for this operation. It is not known how these tools alter the decision-making patterns of shoulder surgeons. The aim of this study was to investigate whether PSP, when compared with the use of plain radiographs or select static CT images, influences the understanding of glenoid pathology and surgical planning. Methods. A case-based survey presented surgeons with a patient’s history, physical examination, and, sequentially, radiographs, select static CT images, and PSP with a 3D imaging program. For each imaging modality, the surgeons were asked to identify the Walch classification of the glenoid and to propose the surgical treatment. The participating surgeons were grouped according to the annual volume of shoulder arthroplasties that they undertook, and responses were compared with the recommendations of two experts. Results. A total of 59 surgeons completed the survey. For all surgeons, the use of the PSP significantly increased agreement with the experts in glenoid classification (x. 2. = 8.54; p = 0.014) and surgical planning (x. 2. = 37.91; p < 0.001). The additional information provided by the PSP also showed a significantly higher impact on surgical decision-making for surgeons who undertake fewer than ten shoulder arthroplasties annually (p = 0.017). Conclusions. The information provided by PSP has the greatest impact on the surgical decision-making of low volume surgeons (those who perform fewer than ten shoulder arthroplasties annually), and PSP brings all surgeons in to closer agreement with the recommendations of experts for glenoid classification and surgical planning. Cite this article: Bone Joint J 2020;102-B(3):365–370


Bone & Joint Research
Vol. 8, Issue 7 | Pages 304 - 312
1 Jul 2019
Nicholson JA Tsang STJ MacGillivray TJ Perks F Simpson AHRW

Objectives. The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”. Results. The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote union in the management of acute fractures is currently a controversial topic. However, there is strong in vitro evidence that ultrasound can stimulate a biological effect with potential clinical benefit in established nonunions, which supports the need for further investigation. Conclusion. Modern ultrasound image processing has the potential to replace traditional imaging modalities in several areas of trauma practice, particularly in the early prediction of impaired fracture healing. Further understanding of the therapeutic application of ultrasound is required to understand and identify the use in promoting fracture healing. Cite this article: J. A. Nicholson, S. T. J. Tsang, T. J. MacGillivray, F. Perks, A. H. R. W. Simpson. What is the role of ultrasound in fracture management? Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019;8:304–312. DOI: 10.1302/2046-3758.87.BJR-2018-0215.R2


Bone & Joint Open
Vol. 5, Issue 9 | Pages 776 - 784
19 Sep 2024
Gao J Chai N Wang T Han Z Chen J Lin G Wu Y Bi L

Aims

In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance.

Methods

A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims

The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants.

Methods

A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims

This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA).

Methods

This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 56 - 63
1 Jan 2023
de Klerk HH Oosterhoff JHF Schoolmeesters B Nieboer P Eygendaal D Jaarsma RL IJpma FFA van den Bekerom MPJ Doornberg JN

Aims

This study aimed to answer the following questions: do 3D-printed models lead to a more accurate recognition of the pattern of complex fractures of the elbow?; do 3D-printed models lead to a more reliable recognition of the pattern of these injuries?; and do junior surgeons benefit more from 3D-printed models than senior surgeons?

Methods

A total of 15 orthopaedic trauma surgeons (seven juniors, eight seniors) evaluated 20 complex elbow fractures for their overall pattern (i.e. varus posterior medial rotational injury, terrible triad injury, radial head fracture with posterolateral dislocation, anterior (trans-)olecranon fracture-dislocation, posterior (trans-)olecranon fracture-dislocation) and their specific characteristics. First, fractures were assessed based on radiographs and 2D and 3D CT scans; and in a subsequent round, one month later, with additional 3D-printed models. Diagnostic accuracy (acc) and inter-surgeon reliability (κ) were determined for each assessment.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 431 - 438
15 Mar 2023
Vendeuvre T Tabard-Fougère A Armand S Dayer R

Aims

This study aimed to evaluate rasterstereography of the spine as a diagnostic test for adolescent idiopathic soliosis (AIS), and to compare its results with those obtained using a scoliometer.

Methods

Adolescents suspected of AIS and scheduled for radiographs were included. Rasterstereographic scoliosis angle (SA), maximal vertebral surface rotation (ROT), and angle of trunk rotation (ATR) with a scoliometer were evaluated. The area under the curve (AUC) from receiver operating characteristic (ROC) plots were used to describe the discriminative ability of the SA, ROT, and ATR for scoliosis, defined as a Cobb angle > 10°. Test characteristics (sensitivity and specificity) were reported for the best threshold identified using the Youden method. AUC of SA, ATR, and ROT were compared using the bootstrap test for two correlated ROC curves method.


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims

The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system.

Methods

The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims

Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis.

Methods

Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Aims

This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs).

Methods

A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology.


Aims

This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection.

Methods

We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1393 - 1398
1 Dec 2024
Morris WZ Haider S Hinds ST Podeszwa D Ellis H Osborne L Anable N Sucato D

Aims

There has been limited literature regarding outcomes of acetabular rim syndrome (ARS) with persistent acetabular os in the setting of acetabular dysplasia. The purpose of this study was to characterize a cohort of adolescent and young adult patients with ARS with persistent os and compare their radiological and clinical outcomes to patients with acetabular dysplasia without an os.

Methods

We reviewed a prospective database of patients undergoing periacetabular osteotomy (PAO) for symptomatic acetabular dysplasia between January 1999 and December 2021 to identify hips with preoperative os acetabuli, defined as a closed triradiate cartilage but persistence of a superolateral os acetabulum. A total of 14 hips in 12 patients with persistent os acetabuli (ARS cohort) were compared to 50 randomly selected ‘control’ hips without persistent os acetabuli. Preoperative and postoperative radiographs were measured for markers of dysplasia: lateral centre-edge angle, anterior centre-edge angle, acetabular inclination, and migration index. Union of the os was determined in patients with ≥ six months’ follow-up. Patient-reported outcome measures (PROMs) included the University of California, Los Angeles (UCLA) activity score and modified Harris Hip Score (mHHS, maximum score 80) completed at one year postoperatively.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims

To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation.

Methods

Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims

Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.

Methods

99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims

No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model.

Methods

A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 484 - 493
13 Jul 2022
Hayer S Niederreiter B Kalkgruber M Wanic K Maißner J Smolen JS Aletaha D Blüml S Redlich K

Aims

Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αβ and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss.

Methods

Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old IL1-/-IL6-/-hTNFtg in comparison to IL1-/-hTNFtg, IL6-/-hTNFtg, and hTNFtg mice. µCT bone analysis of single deficient and wild-type mice was also performed.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims

Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 842 - 848
1 Aug 2024
Kriechling P Whitefield R Makaram NS Brown IDM Mackenzie SP Robinson CM

Aims

Vascular compromise due to arterial injury is a rare but serious complication of a proximal humeral fracture. The aims of this study were to report its incidence in a large urban population, and to identify clinical and radiological factors which are associated with this complication. We also evaluated the results of the use of our protocol for the management of these injuries.

Methods

A total of 3,497 adult patients with a proximal humeral fracture were managed between January 2015 and December 2022 in a single tertiary trauma centre. Their mean age was 66.7 years (18 to 103) and 2,510 (72%) were female. We compared the demographic data, clinical features, and configuration of those whose fracture was complicated by vascular compromise with those of the remaining patients. The incidence of vascular compromise was calculated from national population data, and predictive factors for its occurrence were investigated using univariate analysis.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 528 - 540
1 Aug 2022
Dong W Postlethwaite BC Wheller PA Brand D Jiao Y Li W Myers LK Gu W

Aims

This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D.

Methods

A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 69 - 77
25 Jan 2024
Achten J Appelbe D Spoors L Peckham N Kandiyali R Mason J Ferguson D Wright J Wilson N Preston J Moscrop A Costa M Perry DC

Aims

The management of fractures of the medial epicondyle is one of the greatest controversies in paediatric fracture care, with uncertainty concerning the need for surgery. The British Society of Children’s Orthopaedic Surgery prioritized this as their most important research question in paediatric trauma. This is the protocol for a randomized controlled, multicentre, prospective superiority trial of operative fixation versus nonoperative treatment for displaced medial epicondyle fractures: the Surgery or Cast of the EpicoNdyle in Children’s Elbows (SCIENCE) trial.

Methods

Children aged seven to 15 years old inclusive, who have sustained a displaced fracture of the medial epicondyle, are eligible to take part. Baseline function using the Patient-Reported Outcomes Measurement Information System (PROMIS) upper limb score, pain measured using the Wong Baker FACES pain scale, and quality of life (QoL) assessed with the EuroQol five-dimension questionnaire for younger patients (EQ-5D-Y) will be collected. Each patient will be randomly allocated (1:1, stratified using a minimization algorithm by centre and initial elbow dislocation status (i.e. dislocated or not-dislocated at presentation to the emergency department)) to either a regimen of the operative fixation or non-surgical treatment.


Bone & Joint 360
Vol. 11, Issue 6 | Pages 34 - 36
1 Dec 2022

The December 2022 Spine Roundup360 looks at: Deep venous thrombosis prophylaxis protocol on a Level 1 trauma centre patient database; Non-specific spondylodiscitis: a new perspective for surgical treatment; Disc degeneration could be recovered after chemonucleolysis; Three-level anterior cervical discectomy and fusion versus corpectomy- anterior cervical discectomy and fusion “hybrid” procedures: how does the alignment look?; Rivaroxaban or enoxaparin for venous thromboembolism prophylaxis; Surgical site infection: when do we have to remove the implants?; Determination of a neurologic safe zone for bicortical S1 pedicle placement; Do you need to operate on unstable spine fractures in the elderly: outcomes and mortality; Degeneration to deformity: when does the patient need both?


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1191 - 1192
1 Nov 2022
Haddad FS


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1457 - 1461
1 Nov 2012
Krishnan SP Dawood A Richards R Henckel J Hart AJ

Improvements in the surgical technique of total knee replacement (TKR) are continually being sought. There has recently been interest in three-dimensional (3D) pre-operative planning using magnetic resonance imaging (MRI) and CT. The 3D images are increasingly used for the production of patient-specific models, surgical guides and custom-made implants for TKR. The users of patient-specific instrumentation (PSI) claim that they allow the optimum balance of technology and conventional surgery by reducing the complexity of conventional alignment and sizing tools. In this way the advantages of accuracy and precision claimed by computer navigation techniques are achieved without the disadvantages of additional intra-operative inventory, new skills or surgical time. This review describes the terminology used in this area and debates the advantages and disadvantages of PSI


Bone & Joint Research
Vol. 11, Issue 8 | Pages 585 - 593
1 Aug 2022
Graham SM Jalal MMK Lalloo DG Hamish R. W. Simpson A

Aims

A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the fracture healing process.

Methods

A total of 16 adult male Wistar rats were randomly divided into two groups (n = eight each): Group 1 was given a combination of Tenfovir 30 mg, Lamivudine 30 mg, and Efavirenz 60 mg per day orally, whereas Group 2 was used as a control. After one week of medication preload, all rats underwent a standardized surgical procedure of mid-shaft tibial osteotomy fixed by intramedullary nail with no gap at the fracture site. Progress in fracture healing was monitored regularly for eight weeks. Further evaluations were carried out after euthanasia by micro-CT, mechanically and histologically. Two blinded orthopaedic surgeons used the Radiological Union Scoring system for the Tibia (RUST) to determine fracture healing.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1292 - 1303
1 Dec 2022
Polisetty TS Jain S Pang M Karnuta JM Vigdorchik JM Nawabi DH Wyles CC Ramkumar PN

Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered.

Cite this article: Bone Joint J 2022;104-B(12):1292–1303.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 923
28 Nov 2022
Hareendranathan AR Wichuk S Punithakumar K Dulai S Jaremko J

Aims

Studies of infant hip development to date have been limited by considering only the changes in appearance of a single ultrasound slice (Graf’s standard plane). We used 3D ultrasound (3DUS) to establish maturation curves of normal infant hip development, quantifying variation by age, sex, side, and anteroposterior location in the hip.

Methods

We analyzed 3DUS scans of 519 infants (mean age 64 days (6 to 111 days)) presenting at a tertiary children’s hospital for suspicion of developmental dysplasia of the hip (DDH). Hips that did not require ultrasound follow-up or treatment were classified as ‘typically developing’. We calculated traditional DDH indices like α angle (αSP), femoral head coverage (FHCSP), and several novel indices from 3DUS like the acetabular contact angle (ACA) and osculating circle radius (OCR) using custom software.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims

To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain.

Methods

First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 147 - 153
19 Feb 2024
Hazra S Saha N Mallick SK Saraf A Kumar S Ghosh S Chandra M

Aims

Posterior column plating through the single anterior approach reduces the morbidity in acetabular fractures that require stabilization of both the columns. The aim of this study is to assess the effectiveness of posterior column plating through the anterior intrapelvic approach (AIP) in the management of acetabular fractures.

Methods

We retrospectively reviewed the data from R G Kar Medical College, Kolkata, India, from June 2018 to April 2023. Overall, there were 34 acetabulum fractures involving both columns managed by medial buttress plating of posterior column. The posterior column of the acetabular fracture was fixed through the AIP approach with buttress plate on medial surface of posterior column. Mean follow-up was 25 months (13 to 58). Accuracy of reduction and effectiveness of this technique were measured by assessing the Merle d’Aubigné score and Matta’s radiological grading at one year and at latest follow-up.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 478 - 489
1 Jul 2023
Tennent D Antonios T Arnander M Ejindu V Papadakos N Rastogi A Pearse Y

Aims

Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT.

Methods

Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available.

Cite this article: Bone Joint J 2024;106-B(10):1100–1110.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction.

Cite this article: Bone Joint Res 2023;12(7):447–454.


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1180 - 1188
1 Oct 2022
Qu H Mou H Wang K Tao H Huang X Yan X Lin N Ye Z

Aims

Dislocation of the hip remains a major complication after periacetabular tumour resection and endoprosthetic reconstruction. The position of the acetabular component is an important modifiable factor for surgeons in determining the risk of postoperative dislocation. We investigated the significance of horizontal, vertical, and sagittal displacement of the hip centre of rotation (COR) on postoperative dislocation using a CT-based 3D model, as well as other potential risk factors for dislocation.

Methods

A total of 122 patients who underwent reconstruction following resection of periacetabular tumour between January 2011 and January 2020 were studied. The risk factors for dislocation were investigated with univariate and multivariate logistic regression analysis on patient-specific, resection-specific, and reconstruction-specific variables.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 532 - 540
2 May 2022
Martin H Robinson PG Maempel JF Hamilton D Gaston P Safran MR Murray IR

There has been a marked increase in the number of hip arthroscopies performed over the past 16 years, primarily in the management of femoroacetabular impingement (FAI). Insights into the pathoanatomy of FAI, and high-level evidence supporting the clinical effectiveness of arthroscopy in the management of FAI, have fuelled this trend. Arthroscopic management of labral tears with repair may have superior results compared with debridement, and there is now emerging evidence to support reconstructive options where repair is not possible. In situations where an interportal capsulotomy is performed to facilitate access, data now support closure of the capsule in selective cases where there is an increased risk of postoperative instability. Preoperative planning is an integral component of bony corrective surgery in FAI, and this has evolved to include computer-planned resection. However, the benefit of this remains controversial. Hip instability is now widely accepted, and diagnostic criteria and treatment are becoming increasingly refined. Instability can also be present with FAI or develop as a result of FAI treatment. In this annotation, we outline major current controversies relating to decision-making in hip arthroscopy for FAI.

Cite this article: Bone Joint J 2022;104-B(5):532–540.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims

Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods.

Methods

In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 859 - 866
4 Nov 2022
Diesel CV Guimarães MR Menegotto SM Pereira AH Pereira AA Bertolucci LH Freitas EC Galia CR

Aims

Our objective was describing an algorithm to identify and prevent vascular injury in patients with intrapelvic components.

Methods

Patients were defined as at risk to vascular injuries when components or cement migrated 5 mm or more beyond the ilioischial line in any of the pelvic incidences (anteroposterior and Judet view). In those patients, a serial investigation was initiated by a CT angiography, followed by a vascular surgeon evaluation. The investigation proceeded if necessary. The main goal was to assure a safe tissue plane between the hardware and the vessels.


Bone & Joint 360
Vol. 11, Issue 4 | Pages 38 - 40
1 Aug 2022


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims

A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting.

Methods

This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.


Bone & Joint 360
Vol. 11, Issue 3 | Pages 9 - 11
1 Jun 2022
Foxall-Smith M


Bone & Joint Research
Vol. 11, Issue 7 | Pages 413 - 425
1 Jul 2022
Tu C Lai S Huang Z Cai G Zhao K Gao J Wu Z Zhong Z

Aims

Gap junction intercellular communication (GJIC) in osteocytes is impaired by oxidative stress, which is associated with age-related bone loss. Ageing is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, it is still unknown whether AOPP accumulation is involved in the impairment of osteocytes’ GJIC. This study aims to investigate the effect of AOPP accumulation on osteocytes’ GJIC in aged male mice and its mechanism.

Methods

Changes in AOPP levels, expression of connexin43 (Cx43), osteocyte network, and bone mass were detected in 18-month-old and three-month-old male mice. Cx43 expression, GJIC function, mitochondria membrane potential, reactive oxygen species (ROS) levels, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation were detected in murine osteocyte-like cells (MLOY4 cells) treated with AOPPs. The Cx43 expression, osteocyte network, bone mass, and mechanical properties were detected in three-month-old mice treated with AOPPs for 12 weeks.


Bone & Joint 360
Vol. 11, Issue 3 | Pages 14 - 17
1 Jun 2022


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims

Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error.

Methods

A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Δsacral slope(SS)stand-sit > 30°), or stiff (SSstand-sit < 10°) spinopelvic mobility contributed to increased error rates.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 759 - 766
1 Dec 2021
Nicholson JA Oliver WM MacGillivray TJ Robinson CM Simpson AHRW

Aims

The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus.

Methods

A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC).


Bone & Joint 360
Vol. 11, Issue 4 | Pages 25 - 29
1 Aug 2022


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1662 - 1668
1 Nov 2021
Bhanushali A Chimutengwende-Gordon M Beck M Callary SA Costi K Howie DW Solomon LB

Aims

The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements.

Methods

Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable.


Bone & Joint 360
Vol. 11, Issue 2 | Pages 34 - 37
1 Apr 2022


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 352 - 358
1 Mar 2022
Kleeman-Forsthuber L Vigdorchik JM Pierrepont JW Dennis DA

Aims

Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application.

Methods

Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°.


Bone & Joint 360
Vol. 11, Issue 1 | Pages 17 - 20
1 Feb 2022


Bone & Joint Research
Vol. 10, Issue 12 | Pages 840 - 843
15 Dec 2021
Al-Hourani K Tsang SJ Simpson AHRW


Bone & Joint 360
Vol. 11, Issue 2 | Pages 5 - 10
1 Apr 2022
Zheng A Rocos B


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims

The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty.

Methods

Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1642 - 1645
1 Nov 2021
Kayani B Giebaly D Haddad FS


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims

Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation.

Methods

The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation.


Bone & Joint 360
Vol. 10, Issue 5 | Pages 43 - 45
1 Oct 2021


Bone & Joint 360
Vol. 10, Issue 5 | Pages 15 - 18
1 Oct 2021


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


Bone & Joint Open
Vol. 2, Issue 9 | Pages 757 - 764
1 Sep 2021
Verhaegen J Salih S Thiagarajah S Grammatopoulos G Witt JD

Aims

Periacetabular osteotomy (PAO) is an established treatment for acetabular dysplasia. It has also been proposed as a treatment for patients with acetabular retroversion. By reviewing a large cohort, we aimed to test whether outcome is equivalent for both types of morphology and identify factors that influenced outcome.

Methods

A single-centre, retrospective cohort study was performed on patients with acetabular retroversion treated with PAO (n = 62 hips). Acetabular retroversion was diagnosed clinically and radiologically (presence of a crossover sign, posterior wall sign, lateral centre-edge angle (LCEA) between 20° and 35°). Outcomes were compared with a control group of patients undergoing PAO for dysplasia (LCEA < 20°; n = 86 hips). Femoral version was recorded. Patient-reported outcome measures (PROMs), complications, and reoperation rates were measured.


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims

Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA).

Methods

A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 10 - 21
1 Jan 2021
Zong Z Zhang X Yang Z Yuan W Huang J Lin W Chen T Yu J Chen J Cui L Li G Wei B Lin S

Aims

Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model.

Methods

Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone.


Bone & Joint 360
Vol. 9, Issue 6 | Pages 31 - 33
1 Dec 2020


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 739 - 745
1 Apr 2021
Mehta JS Hodgson K Yiping L Kho JSB Thimmaiah R Topiwala U Sawlani V Botchu R

Aims

To benchmark the radiation dose to patients during the course of treatment for a spinal deformity.

Methods

Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)).


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims

Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy.

Methods

THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1359 - 1367
3 Oct 2020
Hasegawa K Okamoto M Hatsushikano S Watanabe K Ohashi M Vital J Dubousset J

Aims

The aim of this study is to test the hypothesis that three grades of sagittal compensation for standing posture (normal, compensated, and decompensated) correlate with health-related quality of life measurements (HRQOL).

Methods

A total of 50 healthy volunteers (normal), 100 patients with single-level lumbar degenerative spondylolisthesis (LDS), and 70 patients with adult to elderly spinal deformity (deformity) were enrolled. Following collection of demographic data and HRQOL measured by the Scoliosis Research Society-22r (SRS-22r), radiological measurement by the biplanar slot-scanning full body stereoradiography (EOS) system was performed simultaneously with force-plate measurements to obtain whole body sagittal alignment parameters. These parameters included the offset between the centre of the acoustic meatus and the gravity line (CAM-GL), saggital vertical axis (SVA), T1 pelvic angle (TPA), McGregor slope, C2-7 lordosis, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL, sacral slope (SS), pelvic tilt (PT), and knee flexion. Whole spine MRI examination was also performed. Cluster analysis of the SRS-22r scores in the pooled data was performed to classify the subjects into three groups according to the HRQOL, and alignment parameters were then compared among the three cluster groups.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 338 - 346
1 Feb 2021
Khow YZ Liow MHL Lee M Chen JY Lo NN Yeo SJ

Aims

This study aimed to identify the tibial component and femoral component coronal angles (TCCAs and FCCAs), which concomitantly are associated with the best outcomes and survivorship in a cohort of fixed-bearing, cemented, medial unicompartmental knee arthroplasties (UKAs). We also investigated the potential two-way interactions between the TCCA and FCCA.

Methods

Prospectively collected registry data involving 264 UKAs from a single institution were analyzed. The TCCAs and FCCAs were measured on postoperative radiographs and absolute angles were analyzed. Clinical assessment at six months, two years, and ten years was undertaken using the Knee Society Knee score (KSKS) and Knee Society Function score (KSFS), the Oxford Knee Score (OKS), the 36-Item Short-Form Health Survey questionnaire (SF-36), and range of motion (ROM). Fulfilment of expectations and satisfaction was also recorded. Implant survivorship was reviewed at a mean follow-up of 14 years (12 to 16). Multivariate regression models included covariates, TCCA, FCCA, and two-way interactions between them. Partial residual graphs were generated to identify angles associated with the best outcomes. Kaplan-Meier analysis was used to compare implant survivorship between groups.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 874 - 880
1 Jul 2020
Langerhuizen DWG Bergsma M Selles CA Jaarsma RL Goslings JC Schep NWL Doornberg JN

Aims

The aim of this study was to investigate whether intraoperative 3D fluoroscopic imaging outperforms dorsal tangential views in the detection of dorsal cortex screw penetration after volar plating of an intra-articular distal radial fracture, as identified on postoperative CT imaging.

Methods

A total of 165 prospectively enrolled patients who underwent volar plating for an intra-articular distal radial fracture were retrospectively evaluated to study three intraoperative imaging protocols: 1) standard 2D fluoroscopic imaging with anteroposterior (AP) and elevated lateral images (n = 55); 2) 2D fluoroscopic imaging with AP, lateral, and dorsal tangential views images (n = 50); and 3) 3D fluoroscopy (n = 60). Multiplanar reconstructions of postoperative CT scans served as the reference standard.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1587 - 1596
1 Nov 2020
Hotchen AJ Dudareva M Corrigan RA Ferguson JY McNally MA

Aims

This study presents patient-reported quality of life (QoL) over the first year following surgical debridement of long bone osteomyelitis. It assesses the bone involvement, antimicrobial options, coverage of soft tissues, and host status (BACH) classification as a prognostic tool and its ability to stratify cases into ‘uncomplicated’ or ‘complex’.

Methods

Patients with long-bone osteomyelitis were identified prospectively between June 2010 and October 2015. All patients underwent surgical debridement in a single-staged procedure at a specialist bone infection unit. Self-reported QoL was assessed prospectively using the three-level EuroQol five-dimension questionnaire (EQ-5D-3L) index score and visual analogue scale (EQ-VAS) at five postoperative time-points (baseline, 14 days, 42 days, 120 days, and 365 days). BACH classification was applied retrospectively by two clinicians blinded to outcome.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 513 - 518
1 Apr 2020
Hershkovich O D’Souza A Rushton PRP Onosi IS Yoon WW Grevitt MP

Aims

Significant correction of an adolescent idiopathic scoliosis in the coronal plane through a posterior approach is associated with hypokyphosis. Factors such as the magnitude of the preoperative coronal curve, the use of hooks, number of levels fused, preoperative kyphosis, screw density, and rod type have all been implicated. Maintaining the normal thoracic kyphosis is important as hypokyphosis is associated with proximal junctional failure (PJF) and early onset degeneration of the spine. The aim of this study was to determine if coronal correction per se was the most relevant factor in generating hypokyphosis.

Methods

A total of 95 patients (87% female) with a median age of 14 years were included in our study. Pre- and postoperative radiographs were measured and the operative data including upper instrumented vertebra (UIV), lower instrumented vertebra (LIV), metal density, and thoracic flexibility noted. Further analysis of the post-surgical coronal outcome (group 1 < 60% correction and group 2 ≥ 60%) were studied for their association with the postoperative kyphosis in the sagittal plane using univariate and multivariate logistic regression.


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1242 - 1247
3 Sep 2020
Hsu P Wu K Lee C Lin S Kuo KN Wang T

Aims

Guided growth has been used to treat coxa valga for cerebral palsy (CP) children. However, there has been no study on the optimal position of screw application. In this paper we have investigated the influence of screw position on the outcomes of guided growth.

Methods

We retrospectively analyzed 61 hips in 32 CP children who underwent proximal femoral hemi epiphysiodesis between July 2012 and September 2017. The hips were divided into two groups according to the transphyseal position of the screw in the coronal plane: across medial quarter (Group 1) or middle quarter (Group 2) of the medial half of the physis. We compared pre- and postoperative radiographs in head-shaft angle (HSA), Reimer’s migration percentage (MP), acetabular index (AI), and femoral anteversion angle (FAVA), as well as incidences of the physis growing-off the screw within two years. Linear and Cox regression analysis were conducted to identify factors related to HSA correction and risk of the physis growing-off the screw.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 359 - 363
9 Jul 2020
Teo THL Tan BJ Loo WL Yeo AKS Dinesh SK

The COVID-19 pandemic creates unique challenges in the practice of spinal surgery. We aim to show how the use of a high-definition 3D digital exoscope can help streamline workflows, and protect both patients and healthcare staff.


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1041 - 1047
1 Aug 2020
Hamoodi Z Singh J Elvey MH Watts AC

Aims

The Wrightington classification system of fracture-dislocations of the elbow divides these injuries into six subtypes depending on the involvement of the coronoid and the radial head. The aim of this study was to assess the reliability and reproducibility of this classification system.

Methods

This was a blinded study using radiographs and CT scans of 48 consecutive patients managed according to the Wrightington classification system between 2010 and 2018. Four trauma and orthopaedic consultants, two post CCT fellows, and one speciality registrar based in the UK classified the injuries. The seven observers reviewed preoperative radiographs and CT scans twice, with a minimum four-week interval. Radiographs and CT scans were reviewed separately. Inter- and intraobserver reliability were calculated using Fleiss and Cohen kappa coefficients. The Landis and Koch criteria were used to interpret the strength of the kappa values. Validity was assessed by calculating the percentage agreement against intraoperative findings.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1435 - 1437
1 Nov 2020
Katakura M Mitchell AWM Lee JC Calder JD


Bone & Joint Research
Vol. 9, Issue 6 | Pages 258 - 267
1 Jun 2020
Yao X Zhou K Lv B Wang L Xie J Fu X Yuan J Zhang Y

Aims

Tibial plateau fractures (TPFs) are complex injuries around the knee caused by high- or low-energy trauma. In the present study, we aimed to define the distribution and frequency of TPF lines using a 3D mapping technique and analyze the rationalization of divisions employed by frequently used classifications.

Methods

In total, 759 adult patients with 766 affected knees were retrospectively reviewed. The TPF fragments on CT were multiplanar reconstructed, and virtually reduced to match a 3D model of the proximal tibia. 3D heat mapping was subsequently created by graphically superimposing all fracture lines onto a tibia template.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 236 - 244
11 Jun 2020
Verstraete MA Moore RE Roche M Conditt MA

Aims

The use of technology to assess balance and alignment during total knee surgery can provide an overload of numerical data to the surgeon. Meanwhile, this quantification holds the potential to clarify and guide the surgeon through the surgical decision process when selecting the appropriate bone recut or soft tissue adjustment when balancing a total knee. Therefore, this paper evaluates the potential of deploying supervised machine learning (ML) models to select a surgical correction based on patient-specific intra-operative assessments.

Methods

Based on a clinical series of 479 primary total knees and 1,305 associated surgical decisions, various ML models were developed. These models identified the indicated surgical decision based on available, intra-operative alignment, and tibiofemoral load data.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 568 - 572
1 May 2020
McDonnell JM Ahern DP Ó Doinn T Gibbons D Rodrigues KN Birch N Butler JS

Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal.

There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced.

Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described.

The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery.

Cite this article: Bone Joint J 2020;102-B(5):568–572.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims

The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease.

Methods

A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims

Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery.

Methods

A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 137 - 143
1 Jan 2020
Dias R Johnson NA Dias JJ

Aims

Carpal malalignment after a distal radial fracture occurs due to loss of volar tilt. Several studies have shown that this has an adverse influence on function. We aimed to investigate the magnitude of dorsal tilt that leads to carpal malalignment, whether reduction of dorsal tilt will correct carpal malalignment, and which measure of carpal malalignment is the most useful.

Methods

Radiographs of patients with a distal radial fracture were prospectively collected and reviewed. Measurements of carpal malalignment were recorded on the initial radiograph, the radiograph following reduction of the fracture, and after a further interval. Linear regression modelling was used to assess the relationship between dorsal tilt and carpal malalignment. Receiver operating characteristic (ROC) analysis was used to identify which values of dorsal tilt led to carpal malalignment.


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1585 - 1591
1 Dec 2018
Kaneko T Kono N Mochizuki Y Hada M Sunakawa T Ikegami H Musha Y

Aims

Patellofemoral problems are a common complication of total knee arthroplasty. A high compressive force across the patellofemoral joint may affect patient-reported outcome. However, the relationship between patient-reported outcome and the intraoperative patellofemoral contact force has not been investigated. The purpose of this study was to determine whether or not a high intraoperative patellofemoral compressive force affects patient-reported outcome.

Patients and Methods

This prospective study included 42 patients (42 knees) with varus-type osteoarthritis who underwent a bi-cruciate stabilized total knee arthroplasty and in whom the planned alignment was confirmed on 3D CT. Of the 42 patients, 36 were women and six were men. Their mean age was 72.3 years (61 to 87) and their mean body mass index (BMI) was 24.4 kg/m2 (18.2 to 34.3). After implantation of the femoral and tibial components, the compressive force across the patellofemoral joint was measured at 10°, 30°, 60°, 90°, 120°, and 140° of flexion using a load cell (Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan) manufactured in the same shape as the patellar implant. Multiple regression analyses were conducted to investigate the relationship between intraoperative patellofemoral compressive force and patient-reported outcome two years after implantation.


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1479 - 1488
1 Dec 2019
Laverdière C Corban J Khoury J Ge SM Schupbach J Harvey EJ Reindl R Martineau PA

Aims

Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery, augmented reality (AR) may become an important tool for surgeons in the future. By superimposing a digital image on a user’s view of the physical world, this technology shows great promise in orthopaedics. The aim of this review is to investigate the current and potential uses of AR in orthopaedics.

Materials and Methods

A systematic review of the PubMed, MEDLINE, and Embase databases up to January 2019 using the keywords ‘orthopaedic’ OR ‘orthopedic AND augmented reality’ was performed by two independent reviewers.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety.

Cite this article: Bone Joint J 2020;102-B(3):371–375.


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1058 - 1062
1 Sep 2019
van Kuijk KSR Reijman M Bierma-Zeinstra SMA Waarsing JH Meuffels DE

Aims

Little is known about the risk factors that predispose to a rupture of the posterior cruciate ligament (PCL). Identifying risk factors is the first step in trying to prevent a rupture of the PCL from occurring. The morphology of the knee in patients who rupture their PCL may differ from that of control patients. The purpose of this study was to identify any variations in bone morphology that are related to a PCL.

Patients and Methods

We compared the anteroposterior (AP), lateral, and Rosenberg view radiographs of 94 patients with a ruptured PCL to a control group of 168 patients matched by age, sex, and body mass index (BMI), but with an intact PCL after a knee injury. Statistical shape modelling software was used to assess the shape of the knee and determine any difference in anatomical landmarks.


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1042 - 1049
1 Sep 2019
Murphy MP Killen CJ Ralles SJ Brown NM Hopkinson WJ Wu K

Aims

Several radiological methods of measuring anteversion of the acetabular component after total hip arthroplasty (THA) have been described. These are limited by low reproducibility, are less accurate than CT 3D reconstruction, and are cumbersome to use. These methods also partly rely on the identification of obscured radiological borders of the component. We propose two novel methods, the Area and Orthogonal methods, which have been designed to maximize use of readily identifiable points while maintaining the same trigonometric principles.

Patients and Methods

A retrospective study of plain radiographs was conducted on 160 hips of 141 patients who had undergone primary THA. We compared the reliability and accuracy of the Area and Orthogonal methods with two of the current leading methods: those of Widmer and Lewinnek, respectively.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 99 - 107
1 Mar 2020
Chang C Jou I Wu T Su F Tai T

Aims

Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing.

Methods

We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Zhang B Sun H Zhan Y He Q Zhu Y Wang Y Luo C

Objectives

CT-based three-column classification (TCC) has been widely used in the treatment of tibial plateau fractures (TPFs). In its updated version (updated three-column concept, uTCC), a fracture morphology-based injury mechanism was proposed for effective treatment guidance. In this study, the injury mechanism of TPFs is further explained, and its inter- and intraobserver reliability is evaluated to perfect the uTCC.

Methods

The radiological images of 90 consecutive TPF patients were collected. A total of 47 men (52.2%) and 43 women (47.8%) with a mean age of 49.8 years (sd 12.4; 17 to 77) were enrolled in our study. Among them, 57 fractures were on the left side (63.3%) and 33 were on the right side (36.7%); no bilateral fracture existed. Four observers were chosen to classify or estimate independently these randomized cases according to the Schatzker classification, TCC, and injury mechanism. With two rounds of evaluation, the kappa values were calculated to estimate the inter- and intrareliability.


Bone & Joint 360
Vol. 8, Issue 3 | Pages 3 - 7
1 Jun 2019
Patel NG Waterson HB Phillips JRA Toms AD


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 189 - 197
1 Feb 2019
Yoshitani J Kabata T Kajino Y Ueno T Ueoka K Nakamura T Tsuchiya H

Aims

We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component, as assessed by morphometric geometrical analysis, and its reliability.

Patients and Methods

A total of 52 Crowe IV hips (42 patients; seven male, 35 female; mean age 68.5 years (32 to 82)) and 50 normal hips (50 patients; eight male, 42 female; mean age 60.7 years (34 to 86)) undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiological inclination of 40° and anteversion of 20°. Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis.


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1325 - 1330
1 Nov 2019
White J Couzens G Jeffery C

The wrist is a complex joint involving many small bones and complicated kinematics. It has, therefore, been traditionally difficult to image and ascertain information about kinematics when making a diagnosis. Although MRI and fluoroscopy have been used, they both have limitations. Recently, there has been interest in the use of 4D-CT in imaging the wrist. This review examines the literature regarding the use of 4D-CT in imaging the wrist to assess kinematics and its ability to diagnose pathology. Some questions remain about the description of normal ranges, the most appropriate method of measuring intercarpal stability, the accuracy compared with established standards, and the place of 4D-CT in postoperative assessment.

Cite this article: Bone Joint J 2019;101-B:1325–1330.