We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion.Objectives
Methods
We evaluated the efficacy of Cite this article:
Using the United States Nationwide Inpatient
Sample, we identified national trends in revision spinal fusion
along with a comprehensive comparison of comorbidities, inpatient
complications and surgical factors of revision spinal fusion compared
to primary spinal fusion. In 2009, there were 410 158 primary spinal fusion discharges
and 22 128 revision spinal fusion discharges. Between 2002 and 2009,
primary fusion increased at a higher rate compared with revision
fusion (56.4% In the multivariable logistic regression model for all spinal
fusions, depression (odds ratio (OR) 1.53, p <
0.001), psychotic
disorders (OR 1.49, p <
0.001), deficiency anaemias (OR 1.35,
p <
0.001) and smoking (OR 1.10, p = 0.006) had a greater chance
of occurrence in revision spinal fusion discharges than in primary
fusion discharges, adjusting for other variables. In terms of complications,
after adjusting for all significant comorbidities, this study found
that dural tears (OR 1.41; p <
0.001) and surgical site infections
(OR 3.40; p <
0.001) had a greater chance of occurrence in revision
spinal fusion discharges than in primary fusion discharges (p <
0.001). A p-value <
0.01 was considered significant in all final
analyses. Cite this article:
Aims. The aim of this study was to identify the risk factors for adverse events following the surgical correction of cervical spinal deformities in adults. Methods. We identified adult patients who underwent corrective cervical spinal surgery between 1 January 2007 and 31 December 2015 from the MarketScan database. The baseline comorbidities and characteristics of the operation were recorded. Adverse events were defined as the development of a complication, an unanticipated deleterious postoperative event, or further surgery. Patients aged < 18 years and those with a previous history of tumour or trauma were excluded from the study. Results. A total of 13,549 adults in the database underwent primary corrective surgery for a cervical spinal deformity during the study period. A total of 3,785 (27.9%) had a complication within 90 days of the procedure, and 3,893 (28.7%) required further surgery within two years. In multivariate analysis, male sex (odds ratio (OR) 0.90 (95% confidence interval (CI) 0.8 to 0.9); p = 0.019) and a posterior approach (compared with a combined surgical approach, OR 0.66 (95% CI 0.5 to 0.8); p < 0.001) significantly decreased the risk of complications. Osteoporosis (OR 1.41 (95% CI 1.3 to 1.6); p < 0.001), dyspnoea (OR 1.48 (95% CI 1.3 to 1.6); p < 0.001), cerebrovascular accident (OR 1.81 (95% CI 1.6 to 2.0); p < 0.001), a posterior approach (compared with an anterior approach, OR 1.23 (95% CI 1.1 to 1.4); p < 0.001), and the use of bone morphogenic protein (BMP) (OR 1.22 (95% CI 1.1 to 1.4); p = 0.003) significantly increased the risks of 90-day complications. In multivariate regression analysis, preoperative dyspnoea (OR 1.50 (95% CI 1.3 to 1.7); p < 0.001), a posterior approach (compared with an anterior approach, OR 2.80 (95% CI 2.4 to 3.2; p < 0.001), and postoperative dysphagia (OR 2.50 (95% CI 1.8 to 3.4); p < 0.001) were associated with a significantly increased risk of further surgery two years postoperatively. A posterior approach (compared with a combined approach, OR 0.32 (95% CI 0.3 to 0.4); p < 0.001), the use of
External fixation of distal tibial fractures is often associated with delayed union. We have investigated whether union can be enhanced by using recombinant bone morphogenetic protein-7 (rhBMP-7). Osteoinduction with rhBMP-7 and bovine collagen was used in 20 patients with distal tibial fractures which had been treated by external fixation (BMP group). Healing of the fracture was compared with that of 20 matched patients in whom treatment was similar except that rhBMP-7 was not used. Significantly more fractures had healed by 16 (p = 0.039) and 20 weeks (p = 0.022) in the
Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined. Results. MicroRNA-186 was predicted to regulate SMAD6. Furthermore, SMAD6 was verified as a target gene of miR-186. Overexpressed miR-186 and SMAD6 silencing resulted in increased callus formation, BMD and BV/TV, as well as maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. In addition, the mRNA and protein levels of SMAD6 were decreased, while BMP-2 and BMP-7 levels were elevated in response to upregulated miR-186 and SMAD6 silencing. Conclusion. In conclusion, the study indicated that miR-186 could activate the
Periosteum is important for bone homoeostasis
through the release of bone morphogenetic proteins (BMPs) and their
effect on osteoprogenitor cells. Smoking has an adverse effect on
fracture healing and bone regeneration. The aim of this study was
to evaluate the effect of smoking on the expression of the BMPs
of human periosteum. Real-time polymerase chain reaction was performed
for BMP-2,-4,-6,-7 gene expression in periosteal samples obtained from
45 fractured bones (19 smokers, 26 non-smokers) and 60 non-fractured
bones (21 smokers, 39 non-smokers). A hierarchical model of BMP
gene expression (BMP-2 >
BMP-6 >
BMP-4 >
BMP-7) was demonstrated
in all samples. When smokers and non-smokers were compared, a remarkable
reduction in the gene expression of BMP-2, -4 and -6 was noticed
in smokers. The comparison of fracture and non-fracture groups demonstrated
a higher gene expression of BMP-2, -4 and -7 in the non-fracture
samples. Within the subgroups (fracture and non-fracture),
The June 2014 Trauma Roundup. 360 . looks at:
The April 2014 Spine Roundup. 360 . looks at: medical treatment for ankylosing spondylitis; unilateral TLIF effective; peg fractures akin to neck of femur fractures; sleep apnoea and spinal surgery; scoliosis in osteogenesis imperfect; paediatric atlanto-occipital dislocation; back pain and obesity: chicken or egg?;
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
The April 2013 Spine Roundup. 360 . looks at: smuggling spinal implants; local bone graft and PLIF; predicting disability with slipped discs; mortality and spinal surgery; spondyloarthropathy; brachytherapy; and fibrin mesh and
Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article:
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article:
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.Aims
Methods
This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.Aims
Methods
This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes. A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data.Aims
Methods
Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors. Cite this article:
Ossification of the ligamentum flavum and secondary spinal-cord compression were produced experimentally in mice by implanting bone morphogenetic protein (BMP) in the lumbar extradural space. The ligamentum flavum became hypertrophied and ossified, and protruded into the spinal canal. The thickness of the ossified ligament increased gradually with time, leading to compression and deformation of the spinal cord which showed various degrees of degeneration. Demyelination occurred in the posterior and lateral white columns and neuronal loss or chromatolysis in the grey matter. The pathological findings in the experimental animals closely resemble those found in the human disease and suggest that
In dogs, resection of a length of the ulna equal to twice the diameter of the mid-shaft leaves a defect which consistently fails to unite. In response to an implant of 100 mg of bovine bone morphogenetic protein (BMP), the defect becomes filled by callus consisting of fibrocartilage, cartilage and woven bone within four weeks. The cartilage is resorbed and replaced by new bone in four to eight weeks. Woven bone is then resorbed, colonised by bone marrow cells and remodelled into lamellar bone. Union of the defect is produced by 12 weeks. Control defects filled with autogeneic cortical bone chips unite after the same period. In regeneration induced by bone morphogenetic protein (BMP) and in repair enhanced by bone graft, union depends upon the proliferation of cells within and around the bone ends. Our working hypothesis is that
Since bone morphogenetic proteins (BMPs) are highly homologous, we investigated the hypothesis that recombinant BMP-4 of the genome of Xenopus laevis (rxBMP-4) may influence the proliferation or differentiation of human primary osteoblast-like cells (HPOC), as occurs with recombinant human
Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing Aims
Methods
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article:
Osteopetrosis (OP) is a rare hereditary disease that causes reduced bone resorption and increased bone density as a result of osteoclastic function defect. Our aim is to review the difficulties, mid-term follow-up results, and literature encountered during the treatment of OP. This is a retrospective and observational study containing data from nine patients with a mean age of 14.1 years (9 to 25; three female, six male) with OP who were treated in our hospital between April 2008 and October 2018 with 20 surgical procedures due to 17 different fractures. Patient data included age, sex, operating time, length of stay, genetic type of the disease, previous surgery, fractures, complications, and comorbidity.Aims
Methods
The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT. A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures.Aims
Methods
To assess the effect of physical exercise (PE) on the histological and transcriptional characteristics of proteoglycan-induced arthritis (PGIA) in BALB/c mice. Following PGIA, mice were subjected to treadmill PE for ten weeks. The tarsal joints were used for histological and genetic analysis through microarray technology. The genes differentially expressed by PE in the arthritic mice were obtained from the microarray experiments. Bioinformatic analysis in the DAVID, STRING, and Cytoscape bioinformatic resources allowed the association of these genes in biological processes and signalling pathways.Aims
Methods
During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly
The lack of disease-modifying treatments for osteoarthritis (OA) is linked to a shortage of suitable biomarkers. This study combines multi-molecule synovial fluid analysis with machine learning to produce an accurate diagnostic biomarker model for end-stage knee OA (esOA). Synovial fluid (SF) from patients with esOA, non-OA knee injury, and inflammatory knee arthritis were analyzed for 35 potential markers using immunoassays. Partial least square discriminant analysis (PLS-DA) was used to derive a biomarker model for cohort classification. The ability of the biomarker model to diagnose esOA was validated by identical wide-spectrum SF analysis of a test cohort of ten patients with esOA.Aims
Methods
The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA). The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both Objectives
Methods
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.
Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes. Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Objectives
Methods
Despite declining frequency of blood transfusion and electrolyte supplementation following total joint arthroplasty, postoperative blood analyses are still routinely ordered for these patients. This study aimed to determine the rate of blood transfusion and electrolyte restoration in arthroplasty patients treated with a perioperative blood conservation protocol and to identify risk factors that would predict the need for transfusion and electrolyte supplementation. Patients undergoing primary total joint arthroplasty of the hip or knee between July 2016 and February 2017 at a single institution were included in the study. Standard preoperative and postoperative laboratory data were collected and reviewed retrospectively. A uniform blood conservation programme was implemented for all patients. Need for blood transfusion or potassium supplementation was determined through a coordinated decision by the care team. Rates of transfusion and supplementation were observed, and patient risk factors were noted.Aims
Patients and Methods
Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing. We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.Aims
Methods
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article:
The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery. A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.Objectives
Methods
Many Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017.Objectives
Methods
This study reviews the use of a titanium mesh cage (TMC) as an
adjunct to intramedullary nail or plate reconstruction of an extra-articular
segmental long bone defect. A total of 17 patients (aged 17 to 61 years) treated for a segmental
long bone defect by nail or plate fixation and an adjunctive TMC
were included. The bone defects treated were in the tibia (nine),
femur (six), radius (one), and humerus (one). The mean length of
the segmental bone defect was 8.4 cm (2.2 to 13); the mean length
of the titanium mesh cage was 8.3 cm (2.6 to 13). The clinical and
radiological records of the patients were analyzed retrospectively.Aims
Patients and Methods
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement Cite this article:
Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM. Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.Objectives
Methods
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge.
The continual cycle of bone formation and resorption
is carried out by osteoblasts, osteocytes, and osteoclasts under
the direction of the bone-signaling pathway. In certain situations
the host cycle of bone repair is insufficient and requires the assistance
of bone grafts and their substitutes. The fundamental properties
of a bone graft are osteoconduction, osteoinduction, osteogenesis,
and structural support. Options for bone grafting include autogenous
and allograft bone and the various isolated or combined substitutes
of calcium sulphate, calcium phosphate, tricalcium phosphate, and
coralline hydroxyapatite. Not all bone grafts will have the same
properties. As a result, understanding the requirements of the clinical
situation and specific properties of the various types of bone grafts
is necessary to identify the ideal graft. We present a review of
the bone repair process and properties of bone grafts and their
substitutes to help guide the clinician in the decision making process. Cite this article:
There is increasing application of bone morphogenetic proteins
(BMPs) owing to their role in promoting fracture healing and bone
fusion. However, an optimal delivery system has yet to be identified.
The aims of this study were to synthesise bioactive BMP-2, combine
it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide)
(α-TCP/PLGA) nanocomposite and study its release from the composite. BMP-2 was synthesised using an Objectives
Methods
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
A common situation presenting to the orthopaedic
surgeon today is a worn acetabular liner with substantial acetabular
and pelvic osteolysis. The surgeon has many options for dealing
with osteolytic defects. These include allograft, calcium based
substitutes, demineralised bone matrix, or combinations of these
options with or without addition of platelet rich plasma. To date
there are no clinical studies to determine the efficacy of using
bone-stimulating materials in osteolytic defects at the time of
revision surgery and there are surprisingly few studies demonstrating
the clinical efficacy of these treatment options. Even when radiographs
appear to demonstrate incorporation of graft material CT studies
have shown that incorporation is incomplete. The surgeon, in choosing
a graft material for a surgical procedure must take into account
the efficacy, safety, cost and convenience of that material. Cite this article:
In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs.Objectives
Methods
The December 2014 Research Roundup360 looks at: demineralised bone matrix not as good as we thought?; trunk control following ACL reconstruction; subclinical thyroid dysfunction: not quite subclinical?; establishing musculoskeletal function in mucopolysaccharidosis; starting out: a first year in consultant practice under the spotlight; stroke and elective surgery; sepsis and clots; hip geometry and arthritis incidence; and theatre discipline and infection.
Congenital pseudarthrosis of the tibia (CPT)
is a rare but well recognised condition. Obtaining union of the pseudarthrosis
in these children is often difficult and may require several surgical
procedures. The treatment has changed significantly since the review
by Hardinge in 1972, but controversies continue as to the best form
of surgical treatment. This paper reviews these controversies. Cite this article:
In order to investigate the osteoinductive properties of allograft used in impaction grafting and the effect of strain during impaction on these properties, we designed an We have shown that BMP-7 is released from fresh-frozen femoral head cancellous bone in proportion to the strain applied to the bone. This suggests that the impaction process itself may contribute to the biological process of remodelling and bony incorporation.
The August 2012 Research Roundup360 looks at: PRP and chondrogenic differentiation; basic fibroblast growth factor; whether glucosamine works; randomised trials; ossification of the ligamentum flavum; treadmill running; inhibiting BMP antagonists; and whether NSAIDs delay union after all.
We aimed to assess the influence of ethnicity on the incidence
of heterotopic ossification (HO) after total hip arthroplasty (THA). We studied the six-month post-operative anteroposterior radiographs
of 1449 consecutive primary THAs (1324 patients) and retrospectively
graded them for the presence of HO, using the Brooker Classification. Aims
Patients and Methods
The presacral retroperitoneal approach for axial lumbar interbody fusion (presacral ALIF) is not widely reported, particularly with regard to the mid-term outcome. This prospective study describes the clinical outcomes, complications and rates of fusion at a follow-up of two years for 26 patients who underwent this minimally invasive technique along with further stabilisation using pedicle screws. The fusion was single-level at the L5-S1 spinal segment in 17 patients and two-level at L4–5 and L5-S1 in the other nine. The visual analogue scale for pain and Oswestry Disability Index scores were recorded pre-operatively and during the 24-month study period. The evaluation of fusion was by thin-cut CT scans at six and 12 months, and flexion-extension plain radiographs at six, 12 and 24 months. Significant reductions in pain and disability occurred as early as three weeks postoperatively and were maintained. Fusion was achieved in 22 of 24 patients (92%) at 12 months and in 23 patients (96%) at 24 months. One patient (4%) with a pseudarthrosis underwent successful revision by augmentation of the posterolateral fusion mass through a standard open midline approach. There were no severe adverse events associated with presacral ALIF, which in this series demonstrated clinical outcomes and fusion rates comparable with those of reports of other methods of interbody fusion.
Currently, there is no animal model in which
to evaluate the underlying physiological processes leading to the heterotopic
ossification (HO) which forms in most combat-related and blast wounds.
We sought to reproduce the ossification that forms under these circumstances
in a rat by emulating patterns of injury seen in patients with severe
injuries resulting from blasts. We investigated whether exposure
to blast overpressure increased the prevalence of HO after transfemoral
amputation performed within the zone of injury. We exposed rats
to a blast overpressure alone (BOP-CTL), crush injury and femoral
fracture followed by amputation through the zone of injury (AMP-CTL)
or a combination of these (BOP-AMP). The presence of HO was evaluated
using radiographs, micro-CT and histology. HO developed in none
of nine BOP-CTL, six of nine AMP-CTL, and in all 20 BOP-AMP rats.
Exposure to blast overpressure increased the prevalence of HO. This model may thus be used to elucidate cellular and molecular
pathways of HO, the effect of varying intensities of blast overpressure,
and to evaluate new means of prophylaxis and treatment of heterotopic
ossification. Cite this article:
The aim of this study was to assess the effect
of injecting genetically engineered chondrocytes expressing transforming
growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis.
We assessed the resultant function, pain and quality of life. A total of 54 patients (20 men, 34 women) who had a mean age
of 58 years (50 to 66) were blinded and randomised (1:1) to receive
a single injection of the active treatment or a placebo. We assessed
post-treatment function, pain severity, physical function, quality
of life and the incidence of treatment-associated adverse events. Patients
were followed at four, 12 and 24 weeks after injection. At final follow-up the treatment group had a significantly greater
improvement in the mean International Knee Documentation Committee
score than the placebo group (16 points; -18 to 49, This technique may result in improved clinical outcomes, with
the aim of slowing the degenerative process, leading to improvements
in pain and function. However, imaging and direct observational
studies are needed to verify cartilage regeneration. Nevertheless,
this study provided a sufficient basis to proceed to further clinical testing. Cite this article:
The August 2014 Spine Roundup360 looks at: rhBMP complicates cervical spine surgery; posterior longitudinal ligament revisited; thoracolumbar posterior instrumentation without fusion in burst fractures; risk modelling for VTE events in spinal surgery; the consequences of dural tears in microdiscectomy; trends in revision spinal surgery; radiofrequency denervation likely effective in facet joint pain and hooks optimally biomechanically transition posterior instrumentation.
Effects of insulin-like growth factor 1 (IGF1), fibroblast growth
factor 2 (FGF2) and bone morphogenetic protein 2 (BMP2) on the expression
of genes involved in the proliferation and differentiation of osteoblasts
in culture were analysed. The best sequence of growth factor addition
that induces expansion of cells before their differentiation was
sought. Primary human osteoblasts in Objectives
Methods
The treatment of infected nonunions is difficult.
Antibiotic cement-coated (ACC) rods provide stability as well as delivering
antibiotics. We conducted a review of 110 infected nonunions treated
with ACC rods. Patients were divided into two groups: group A (67
patients) with an infected arthrodesis, and group B (43 patients)
with an infected nonunion in a long bone. In group A, infected arthrodesis,
the success rate after the first procedure was 38/67 (57%), 29/67
(43%) required further surgery for either control of infection or
non-union. At last follow-up, five patients required amputation,
representing a limb salvage rate of 62/67 (93%) overall. In all,
29/67 (43%) presented with a bone defect with a mean size of 6.78
cm (2 to 25). Of those with a bone defect, 13/29 (45%) required
further surgery and had a mean size of defect of 7.2 cm (3.5 to
25). The cultures were negative in 17/67 (26%) and the most common
organism cultured was methicillin-resistant Cite this article:
The April 2014 Trauma Roundup360 looks at: is it safe to primarily close dog bite wounds?; conservative transfusion evidence based in hip fracture surgery; tibial nonunion is devastating to quality of life; sexual dysfunction after traumatic pelvic fracture; hemiarthroplasty versus fixation in displaced femoral neck fractures; silver VAC dressings “Gold Standard” in massive wounds; dual plating for talar neck fracture; syndesmosis and fibular length easiest errors in ankle fracture surgery; and dual mobility: stable as a rock in fracture.
The February 2014 Trauma Roundup360 looks at: predicting nonunion; compartment Syndrome; octogenarian RTCs; does HIV status affect decision making in open tibial fractures?; flap timing and related complications; proximal humeral fractures under the spotlight; restoration of hip architecture with bipolar hemiarthroplasty in the elderly; and short
The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone. Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.
The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats. Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group. Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.
Bone allografts can be used in any kind of surgery involving bone from minor defects to major bone loss after tumour resection. This review describes the various types of bone grafts and the current knowledge on bone allografts, from procurement and preparation to implantation. The surgical conditions for optimising the incorporation of bone are outlined, and surgeon expectations from a bone allograft discussed.
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.
We systematically reviewed the published literature
on the complications of closing wedge high tibial osteotomy for
the treatment of unicompartmental osteoarthritis of the knee. Publications
were identified using the Cochrane Library, MEDLINE, EMBASE and
CINAHL databases up to February 2012. We assessed randomised (RCTs), controlled
group clinical (CCTs) trials, case series in publications associated
with closing wedge osteotomy of the tibia in patients with osteoarthritis
of the knee and finally a Cochrane review. Many of these trials
included comparative studies (opening wedge
Iontophoresis is a novel technique which may be used to facilitate the movement of antibiotics into the substance of bone using an electrical potential applied externally. We have examined the rate of early infection in allografts following application of this technique in clinical practice. A total of 31 patients undergoing revision arthroplasty or surgery for limb salvage received 34 iontophoresed sequential allografts, of which 26 survived for a minimum of two years. The mean serum antibiotic levels after operation were low (gentamicin 0.37 mg/l (0.2 to 0.5); flucloxacillin 1 mg/l (0 to 1) and the levels in the drains were high (gentamicin 40 mg/l (2.5 to 131); flucloxacillin 17 mg/l (1 to 43). There were no early deep infections. Two late infections were presumed to be haemotogenous; 28 of the 34 allografts were retained. In 12 patients with pre-existing proven infection further infection has not occurred at a mean follow-up of 51 months (24 to 82).
We carried out a systematic review of the literature
to evaluate the evidence regarding the clinical results of the Ilizarov
method in the treatment of long bone defects of the lower limbs. Only 37 reports (three non-randomised comparative studies, one
prospective study and 33 case-series) met our inclusion criteria.
Although several studies were unsatisfactory in terms of statistical
heterogeneity, our analysis appears to show that the Ilizarov method
of distraction osteogenesis significantly reduced the risk of deep
infection in infected osseous lesions (risk ratio 0.14 (95% confidence
interval (CI) 0.10 to 0.20), p <
0.001). However, there was a
rate of re-fracture of 5% (95% CI 3 to 7), with a rate of neurovascular
complications of 2.2% (95% CI 0.3 to 4) and an amputation rate of
2.9% (95% CI 1.4 to 4.4).The data was generally not statistically
heterogeneous. Where tibial defects were >
8 cm, the risk of re-fracture
increased (odds ratio 3.7 (95% CI 1.1 to 12.5), p = 0.036). The technique is demanding for patients, illustrated by the voluntary
amputation rate of 1.6% (95% CI 0 to 3.1), which underlines the
need for careful patient selection. Cite this article:
The pathogenesis of rotator cuff disease (RCD) is complex and
not fully understood. This systematic review set out to summarise
the histological and molecular changes that occur throughout the
spectrum of RCD. We conducted a systematic review of the scientific literature
with specific inclusion and exclusion criteria.Introduction
Methods
We reviewed 59 bone graft substitutes marketed
by 17 companies currently available for implantation in the United Kingdom,
with the aim of assessing the peer-reviewed literature to facilitate
informed decision-making regarding their use in clinical practice.
After critical analysis of the literature, only 22 products (37%)
had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita),
Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question
the need for so many different products, especially with limited
published clinical evidence for their efficacy, and conclude that
there is a considerable need for further prospective randomised
trials to facilitate informed decision-making with regard to the
use of current and future bone graft substitutes in clinical practice. Cite this article:
Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair. Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient ( When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.
The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) for the treatment of congenital pseudarthrosis of the tibia has been investigated in only one previous study, with promising results. The aim of this study was to determine whether rhBMP-2 might improve the outcome of this disorder. We reviewed the medical records of five patients with a mean age of 7.4 years (2.3 to 21) with congenital pseudarthrosis of the tibia who had been treated with rhBMP-2 and intramedullary rodding. Ilizarov external fixation was also used in four of these patients. Radiological union of the pseudarthrosis was evident in all of them at a mean of 3.5 months (3.2 to 4) post-operatively. The Ilizarov device was removed after a mean of 4.2 months (3.0 to 5.3). These results indicate that treatment of congenital pseudarthrosis of the tibia using rhBMP-2 in combination with intramedullary stabilisation and Ilizarov external fixation may improve the initial rate of union and reduce the time to union. Further studies with more patients and longer follow-up are necessary to determine whether this surgial procedure may significantly enhance the outcome of congenital pseudarthrosis of the tibia, considering the refracture rate (two of five patients) in this small case series.
This paper outlines the recent development of an exchange Travelling Fellowship scheme between the British and American Orthopaedic Research Societies.
We describe a patient with insufficient bone regeneration of the tibia after bone transport over an intramedullary nail, in whom union was ultimately achieved after exchange nailing and intramedullary application of rh-bone morphogenetic protein-7 at the site of distraction.
Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended training in research to play an important role in bridging the gap between laboratory science and clinical practice. International regulations regarding the introduction of new biological treatments will place an additional burden on the mechanisms of this translational process, and orthopaedic surgeons who are trained in science, surgery and the regulatory environment will be essential. Training and supporting individuals with these skills requires special consideration and discussion by the orthopaedic community. In this paper we review some traditional approaches to the integration of orthopaedic science and surgery, the therapeutic potential of current regenerative biomedical science for cartilage repair and ways in which we may develop surgeons with the skills required to translate scientific discovery into effective and properly assessed orthopaedic treatments.
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant bone morphogenetic protein 7. We found that while some patients were asymptomatic, heterotopic ossification which had occurred around a joint often required operative excision with good results.
Chondral damage to the knee is common and, if left untreated, can proceed to degenerative osteoarthritis. In symptomatic patients established methods of management rely on the formation of fibrocartilage which has poor resistance to shear forces. The formation of hyaline or hyaline-like cartilage may be induced by implanting autologous, cultured chondrocytes into the chondral or osteochondral defect. Autologous chondrocyte implantation may be used for full-thickness chondral or osteochondral injuries which are painful and debilitating with the aim of replacing damaged cartilage with hyaline or hyaline-like cartilage, leading to improved function. The intermediate and long-term functional and clinical results are promising. We provide a review of autologous chondrocyte implantation and describe our experience with the technique at our institution with a mean follow-up of 32 months (1 to 9 years). The procedure is shown to offer statistically significant improvement with advantages over other methods of management of chondral defects.
Heterotopic ossification following joint replacement in the lower limb occurs in 3% to 90% of cases. Higher grades of heterotopic ossification can result in significant limitation of function and can negate the benefits of joint replacement. The understanding of the pathophysiology of this condition has improved in recent years. It would appear to be related to a combination of systemic and local factors, including over-expression of bone morphogenetic protein-4. There is currently little evidence to support the routine use of prophylaxis for heterotopic ossification in arthroplasty patients, but prophylaxis is recommended by some for high-risk patients. Radiotherapy given as one dose of 7 Gy to 8 Gy, either pre-operatively (<
four hours before) or post-operatively (within 72 hours of surgery), appears to be more effective than indometacin therapy (75 mg daily for six weeks). In cases of prophylaxis against recurrent heterotopic ossification following excision, recent work has suggested that a combination of radiotherapy and indometacin is effective. Advances in our understanding of this condition may permit the development of newer, safer treatment modalities.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.