Advertisement for orthosearch.org.uk
Results 1 - 85 of 85
Results per page:
Bone & Joint Research
Vol. 7, Issue 10 | Pages 548 - 560
1 Oct 2018
Qayoom I Raina DB Širka A Tarasevičius Š Tägil M Kumar A Lidgren L

During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions. Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 425 - 433
1 Apr 2007
Little DG Ramachandran M Schindeler A

The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered


The Journal of Bone & Joint Surgery British Volume
Vol. 44-B, Issue 3 | Pages 675 - 687
1 Aug 1962
Burger M Sherman BS Sobel AE

1. A study has been made of the repair of bony defects in the calvaria of albino rats. 2. An accelerated rate of bone repair was observed in experimental defects into which chondroitin sulphate-treated demineralised bone was implanted. 3. Acid-soluble collagen reconstituted with chondroitin sulphate was also more effective as an implant than was acid-soluble collagen reconstituted with sodium chloride. 4. It is concluded from these studies that chondroitin sulphate treatment accelerated the rate of new bone formation induced by demineralised bone, by reconstituted acid-soluble collagen, and to a lesser extent by Gelfoam. It was also found that demineralised bone and fresh homogenous bone promoted bone repair, but that chondroitin sulphate-treated demineralised bone promoted the most rapid rate of bone repair among the substances tested. 5. The possible role of chondroitin sulphate in bone formation is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 427 - 434
1 Apr 2011
Griffin M Iqbal SA Bayat A

Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone


The Journal of Bone & Joint Surgery British Volume
Vol. 37-B, Issue 4 | Pages 691 - 710
1 Nov 1955
Duthie RB Barker AN

1. The utilisation of radioactive sulphur in vivo has been demonstrated both macroscopically and microscopically during the preosseous stage of bone repair. 2. The labelled mucopolysaccharide complex, chondroitin sulphuric acid, has been studied during the formation of the medullary and periosteal blastemata in the healing of a fracture. 3. The appearance and possible significance of mast cells adjacent to a fracture, and resulting from the stimulus of trauma, are discussed. 4. Cortisone has been seen to affect the formation of the periosteal cartilaginous blastema and subsequent process of endochondral ossification, with liberation of increased amounts of chondroitin sulphuric acid which was calcified rather than ossified


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 903 - 904
1 Jun 2010
Rowley DI


Bone & Joint Research
Vol. 8, Issue 3 | Pages 107 - 117
1 Mar 2019
Lim ZXH Rai B Tan TC Ramruttun AK Hui JH Nurcombe V Teoh SH Cool SM

Objectives

Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done.

Methods

We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 635 - 642
1 Aug 1986
Nilsson O Urist M Dawson E Schmalzried T Finerman G

In dogs, resection of a length of the ulna equal to twice the diameter of the mid-shaft leaves a defect which consistently fails to unite. In response to an implant of 100 mg of bovine bone morphogenetic protein (BMP), the defect becomes filled by callus consisting of fibrocartilage, cartilage and woven bone within four weeks. The cartilage is resorbed and replaced by new bone in four to eight weeks. Woven bone is then resorbed, colonised by bone marrow cells and remodelled into lamellar bone. Union of the defect is produced by 12 weeks. Control defects filled with autogeneic cortical bone chips unite after the same period. In regeneration induced by bone morphogenetic protein (BMP) and in repair enhanced by bone graft, union depends upon the proliferation of cells within and around the bone ends. Our working hypothesis is that BMP induces the differentiation of perivascular connective tissue cells into chondroblasts and osteoprogenitor cells and thereby augments the process of bone regeneration from the cells already present in the endosteum and periosteum.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 102 - 111
1 Jun 2013
Patel RA Wilson RF Patel PA Palmer RM

Objectives

To review the systemic impact of smoking on bone healing as evidenced within the orthopaedic literature.

Methods

A protocol was established and studies were sourced from five electronic databases. Screening, data abstraction and quality assessment was conducted by two review authors. Prospective and retrospective clinical studies were included. The primary outcome measures were based on clinical and/or radiological indicators of bone healing. This review specifically focused on non-spinal orthopaedic studies.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 657 - 666
17 Oct 2023
Sung J Barratt KR Pederson SM Chenu C Reichert I Atkins GJ Anderson PH Smitham PJ

Aims

Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy.

Methods

Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).


Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 568 - 574
1 May 2023
Kobayashi H Ito N Nakai Y Katoh H Okajima K Zhang L Tsuda Y Tanaka S

Aims

The aim of this study was to report the patterns of symptoms and insufficiency fractures in patients with tumour-induced osteomalacia (TIO) to allow the early diagnosis of this rare condition.

Methods

The study included 33 patients with TIO who were treated between January 2000 and June 2022. The causative tumour was detected in all patients. We investigated the symptoms and evaluated the radiological patterns of insufficiency fractures of the rib, spine, and limbs.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 412 - 422
4 Jul 2023
Ferguson J Bourget-Murray J Hotchen AJ Stubbs D McNally M

Aims

Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up.

Methods

A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims

Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs).

Methods

A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Aims

This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night.

Methods

In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing. Materials and Methods. Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses. Results. While SEC2 was found to have no effect on rat MSCs proliferation, it promoted the osteoblast differentiation of rat MSCs. In the rat femoral fracture model, the local administration of SEC2 accelerated fracture healing by increasing fracture callus volumes, bone volume over total volume (BV/TV), and biomechanical recovery. The SEC2 treatment group has superior histological appearance compared with the control group. Conclusion. These data suggest that local administration of SEC2 may be a novel therapeutic approach to enhancing bone repair such as fracture healing. Cite this article: T. Wu, J. Zhang, B. Wang, Y. Sun, Y. Liu, G. Li. Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing. Bone Joint Res 2018;7:179–186. DOI: 10.1302/2046-3758.72.BJR-2017-0229.R1


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1329 - 1333
1 Dec 2022
Renfree KJ

This annotation reviews current concepts on the three most common surgical approaches used for proximal interphalangeal joint arthroplasty: dorsal, volar, and lateral. Advantages and disadvantages of each are highlighted, and the outcomes are discussed.

Cite this article: Bone Joint J 2022;104-B(12):1329–1333.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims

Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation.

Methods

The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 337 - 341
1 Mar 2010
Yamasaki T Yasunaga Y Ishikawa M Hamaki T Ochi M

We have investigated the effectiveness of the transplantation of bone-marrow-derived mononuclear cells (BMMNCs) with interconnected porous calcium hydroxyapatite (IP-CHA) on early bone repair for osteonecrosis of the femoral head. We studied 22 patients (30 hips) who had osteonecrosis with a minimum follow-up of one year after implantation of BMMNCs. The mean age at surgery was 41 years (18 to 64) and the mean period of follow-up was 29 months (19 to 48). In a control group, cell-free IP-CHA was implanted into a further eight patients (9 hips) with osteonecrosis of the femoral head and the outcomes were compared. A reduction in the size of the osteonecrotic lesion was observed subsequent to hypertrophy of the bone in the transition zone in the BMMNC group. In three patients in the treatment group progression to extensive collapse was detected. In the control group subtle bone hypertrophy was observed, but severe collapse of the femoral head occurred in six of eight hips. In this limited study the implantation of BMMNCs and IP-CHA appears to confer benefit in the repair of osteonecrosis and in the prevention of collapse


Bone & Joint Research
Vol. 10, Issue 9 | Pages 619 - 628
27 Sep 2021
Maestro-Paramio L García-Rey E Bensiamar F Saldaña L

Aims

To investigate whether idiopathic osteonecrosis of the femoral head (ONFH) is related to impaired osteoblast activities.

Methods

We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head and the intertrochanteric region of patients with idiopathic ONFH, or from the intertrochanteric region of patients with osteoarthritis (OA), and compared their viability, mineralization capacity, and secretion of paracrine factors.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives. Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs. Methods. Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS). Results. HPL and HPL+Hplasma had a significantly greater growth-promoting effect than FBS, while Hplasma exhibited a similar growth-promoting effect to that of FBS. ADMSCs cultured in HPL and/or Hplasma generated more colony-forming unit fibroblasts (CFU-F) than those cultured in FBS. After long-term culture, ADMSCs cultured in HPL and/or Hplasma showed reduced cellular senescence, retained typical cell phenotypes, and retained differentiation capacities into osteogenic and adipogenic lineages. Conclusion. HPL and Hplasma prepared from blood products after their recommended transfusion date can be used as an alternative and effective source for large-scale ex vivo expansion of ADMSCs. Cite this article: J. Phetfong, T. Tawonsawatruk, K. Seenprachawong, A. Srisarin, C. Isarankura-Na-Ayudhya, A. Supokawej. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Bone Joint Res 2017;6:414–422. DOI: 10.1302/2046-3758.67.BJR-2016-0342.R1


Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims

To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model.

Methods

A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme.


Aims

Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing.

Methods

A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 517 - 524
1 Apr 2011
Cox G McGonagle D Boxall SA Buckley CT Jones E Giannoudis PV

The scarcity of mesenchymal stem cells (MSCs) in iliac crest bone marrow aspirate (ICBMA), and the expense and time in culturing cells, has led to the search for alternative harvest sites. The reamer-irrigation-aspirator (RIA) provides continuous irrigation and suction during reaming of long bones. The aspirated contents pass via a filter, trapping bony fragments, before moving into a ‘waste’ bag from which MSCs have been previously isolated. We examined the liquid and solid phases, performed a novel digestion of the solid phase, and made a comparative assessment in terms of number, phenotype and differentiation capacity with matched ICBMA. The solid fraction from the filtrate was digested for 60 minutes at 37°C with collagenase. Enumeration was performed via the colony-forming unit fibroblast (CFU-F) assay. Passage (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages, and their phenotypes assessed using flow cytometry (CD33, CD34, CD45, CD73, CD90, and CD105). MSCs from the RIA phases were able to differentiate at least as well as those from ICBMA, and all fractions had phenotypes consistent with other established sources. The median number of colonies for the three groups was: ICBMA = 8.5 (2 to 86), RIA-liquid = 19.5 (4 to 90), RIA-solid = 109 (67 to 200) per 200 μl. The mean total yield of cells for the three groups was: ICBMA = 920 (0 to 4275), RIA-liquid = 114 983 (16 500 to 477 750), RIA-solid = 12 785 (7210 to 28 475). The RIA filtrate contains large numbers of MSCs that could potentially be extracted without enzymatic digestion and used for bone repair without prior cell expansion


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 380 - 387
5 Jul 2021
Shen J Sun D Fu J Wang S Wang X Xie Z

Aims

In contrast to operations performed for other fractures, there is a high incidence rate of surgical site infection (SSI) post-open reduction and internal fixation (ORIF) done for tibial plateau fractures (TPFs). This study investigates the effect of induced membrane technique combined with internal fixation for managing SSI in TPF patients who underwent ORIF.

Methods

From April 2013 to May 2017, 46 consecutive patients with SSI post-ORIF for TPFs were managed in our centre with an induced membrane technique. Of these, 35 patients were included for this study, with data analyzed in a retrospective manner.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 709 - 718
1 Oct 2020
Raina DB Liu Y Jacobson OLP Tanner KE Tägil M Lidgren L

Bone is a dynamic tissue with a quarter of the trabecular and a fifth of the cortical bone being replaced continuously each year in a complex process that continues throughout an individual’s lifetime. Bone has an important role in homeostasis of minerals with non-stoichiometric hydroxyapatite bone mineral forming the inorganic phase of bone. Due to its crystal structure and chemistry, hydroxyapatite (HA) and related apatites have a remarkable ability to bind molecules. This review article describes the accretion of trace elements in bone mineral giving a historical perspective. Implanted HA particles of synthetic origin have proved to be an efficient recruiting moiety for systemically circulating drugs which can locally biomodulate the material and lead to a therapeutic effect. Bone mineral and apatite however also act as a waste dump for trace elements and drugs, which significantly affects the environment and human health.

Cite this article: Bone Joint Res 2020;9(10):709–718.


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 1 | Pages 148 - 155
1 Feb 1969
Lindholm R Lindholm S Liukko P Paasimaki J Isokääntä S Rossi R Auti0 E Tamminen E

1. Experimental fracture callus in rats contains mast cells as a normal morphological element. 2. The mast cell count undergoes peculiar variations in the normal course of events in experimentally delayed or accelerated bone repair. 3. A hypothesis is presented in which the tissue mast cell granules are regarded as calcium transporters in the mineral phase of callus formation, a process probably corresponding to Selye's concept of "mastocalciphylaxis" and "mastocalcergy."


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 5 | Pages 831 - 833
1 Sep 1994
Jacobsson S Djerf K Ivarsson I Wahlstrom O

We studied the effect of non-steroidal anti-inflammatory drugs on the fixation of hydroxyapatite-coated implants. Cylindrical plugs of pure titanium, coated with hydroxyapatite (HA), were inserted into both femora of 10 adult rabbits, 5 of which received 7 daily doses of 30 mg diclofenac. Three weeks after implantation the interface strengths were measured by the pull-out test. The mean peak force for the diclofenac-treated group was 290 +/- 57 N compared with 369 +/- 37 N for the control group (p < 0.025). We conclude that the inhibitory effect of diclofenac on bone repair is not neutralised by HA-coating of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 444 - 449
1 Apr 2004
Evans CE Butcher C

There is increasing evidence that non-steroidal anti-inflammatory drugs (NSAIDs) can adversely affect bone repair. We have, therefore, studied the in vitro effects of NSAIDs, which differentially inhibit cyclooxygenases (COX), the prostaglandin/thromboxane synthesising enzymes, on human osteoblasts. Indomethacin and the new nitric oxide (NO)-donating NSAIDs block the activity of both COX-1 and COX-2. Indomethacin and 5,5-dimethyl-3-(3 fluorophenyl)-4-(4 methylsulphonal) phenyl-2 (5H)-furanone (DFU) reduced osteoblast numbers in a dose-dependant manner and increased collagen synthesis and alkaline phosphatase activity. The reduction in osteoblast numbers was not caused by loss of adhesion and was reversible. Neither NSAID influenced DNA synthesis. There was no difference between the effects of indomethacin and DFU. NO-NSAIDs did not affect cell numbers. These results suggest that care should be taken when administering NSAIDs to patients with existing skeletal problems and that NO-NSAIDs may be safer


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 2 | Pages 401 - 408
1 May 1968
Prasad GC Reynolds JJ

1. The use of a protein-free synthetic medium has provided a new technical approach to the study of fracture healing in vitro. 2. The tibiae of fourteen-day embryonic chicks were cut in half in the middle of the shaft, the fragments were placed in apposition and the explants grown in vitro for up to sixteen days. The process of bone repair was studied by means of histology and biochemical estimations. 3. The rate of growth in length of fractured bones was greater in an atmosphere containing 50 per cent of oxygen than in one with 20 per cent oxygen, thus emphasising the importance of an adequate oxygen supply for the regeneration of osteogenic cells. 4. The effect of varying the concentration of glucose in the medium was investigated. Two milligrams of glucose per millilitre was the most favourable for healing; higher levels caused fibroblastic changes in the cartilage cells and inhibited the proliferation of osteogenic cells at the fracture site. 5. Histological examination showed that many of the phenomena that occur in the repair of fractures in vivo can be reproduced in vitro in synthetic medium. Similar results were obtained whether the fracture was made in whole bones or in isolated shafts from which the cartilaginous ends had been removed; the latter are more favourable for biochemical study


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 108 - 114
1 Jul 2019
Ji G Xu R Niu Y Li N Ivashkiv L Bostrom MPG Greenblatt MB Yang X

Aims

It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway.

Materials and Methods

An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium. RNA sequencing analysis was performed using sorted CD31hiEMCNhi endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 1 - 14
1 Jan 2020
Stewart S Darwood A Masouros S Higgins C Ramasamy A

Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion.

Cite this article: Bone Joint Res 2019;9(1):1–14.


Objectives

MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture.

Methods

Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation.

Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 397 - 404
1 Aug 2019
Osagie-Clouard L Sanghani-Kerai A Coathup M Meeson R Briggs T Blunn G

Objectives

Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1).

Methods

Cells were isolated from the adipose and bone marrow of juvenile, adult, and previously OVX Wistar rats, and were characterized with flow cytometry, proliferation assays, osteogenic and adipogenic differentiation, and migration to SDF-1. Experiments were repeated with and without intermittent hPTH 1-34.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods. The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results. The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions. The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2


Bone & Joint Research
Vol. 7, Issue 12 | Pages 620 - 628
1 Dec 2018
Tätting L Sandberg O Bernhardsson M Ernerudh J Aspenberg† P

Objectives

Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline.

Methods

Ten-week-old male C56/Bl6J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 289 - 297
1 Apr 2018
Sanghani-Kerai A Osagie-Clouard L Blunn G Coathup M

Objectives

This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis.

Methods

Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s t-test, where p-values < 0.05 were considered significant.


The Journal of Bone & Joint Surgery British Volume
Vol. 37-B, Issue 4 | Pages 663 - 675
1 Nov 1955
Rhaney K Lamb DW

1. An attempt has been made to correlate the radiographic appearances and the morbid anatomy of the cystic changes that occur in the head of the femur in advanced osteoarthritis. 2. The suggestion is made that these lesions are foci of traumatic bone necrosis. Repair may be complicated by the subsequent entrance of synovial fluid through defects in the surface


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 124 - 130
1 Feb 2018
Coric D Bullard DE Patel VV Ryaby JT Atkinson BL He D Guyer RD

Objectives

Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures.

Methods

Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational device exemption (IDE) study: a post hoc (PH) analysis of high-risk subjects from the FDA study (PH PEMF); and a multicentre, open-label (OL) study consisting of 274 subjects treated with PEMF (OL PEMF). Fisher’s exact test and multivariate logistic regression was used to compare fusion rates between PEMF-treated subjects and historical controls.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large animal model. The superior performance of Acropora-TECs brings us closer to a clinical application, probably because of more suitable bioresorption kinetics. However, nonunion still occurred in nearly half of the bone defects. Cite this article: A. Decambron, M. Manassero, M. Bensidhoum, B. Lecuelle, D. Logeart-Avramoglou, H. Petite, V. Viateau. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 2017;6:208–215. DOI: 10.1302/2046-3758.64.BJR-2016-0236.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives

This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling.

Methods

A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group.


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 494 - 502
1 Apr 2017
Simpson AHRW Keenan G Nayagam S Atkins RM Marsh D Clement ND

Aims

The aim of this double-blind prospective randomised controlled trial was to assess whether low intensity pulsed ultrasound (LIPUS) accelerated or enhanced the rate of bone healing in adult patients undergoing distraction osteogenesis.

Patients and Methods

A total of 62 adult patients undergoing limb lengthening or bone transport by distraction osteogenesis were randomised to treatment with either an active (n = 32) or a placebo (n = 30) ultrasound device. A standardised corticotomy was performed in the proximal tibial metaphysis and a circular Ilizarov frame was used in all patients. The rate of distraction was also standardised. The primary outcome measure was the time to removal of the frame after adjusting for the length of distraction in days/cm for both the per protocol (PP) and the intention-to-treat (ITT) groups. The assessor was blinded to the form of treatment. A secondary outcome was to identify covariates affecting the time to removal of the frame.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives

To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone.

Methods

Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives

Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results.

Methods

We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 427 - 435
1 Sep 2016
Stravinskas M Horstmann P Ferguson J Hettwer W Nilsson M Tarasevicius S Petersen MM McNally MA Lidgren L

Objectives

Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing.

The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets.

DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory.

Materials and Methods

We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives

The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration.

Methods

A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed.


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1263 - 1268
1 Sep 2013
Savaridas T Wallace RJ Salter DM Simpson AHRW

Fracture repair occurs by two broad mechanisms: direct healing, and indirect healing with callus formation. The effects of bisphosphonates on fracture repair have been assessed only in models of indirect fracture healing.

A rodent model of rigid compression plate fixation of a standardised tibial osteotomy was used. Ten skeletally mature Sprague–Dawley rats received daily subcutaneous injections of 1 µg/kg ibandronate (IBAN) and ten control rats received saline (control). Three weeks later a tibial osteotomy was rigidly fixed with compression plating. Six weeks later the animals were killed. Fracture repair was assessed with mechanical testing, radiographs and histology.

The mean stress at failure in a four-point bending test was significantly lower in the IBAN group compared with controls (8.69 Nmm-2 (sd 7.63) vs 24.65 Nmm-2 (sd 6.15); p = 0.017). On contact radiographs of the extricated tibiae the mean bone density assessment at the osteotomy site was lower in the IBAN group than in controls (3.7 mmAl (sd 0.75) vs 4.6 mmAl (sd 0.57); p = 0.01). In addition, histological analysis revealed progression to fracture union in the controls but impaired fracture healing in the IBAN group, with predominantly cartilage-like and undifferentiated mesenchymal tissue (p = 0.007).

Bisphosphonate treatment in a therapeutic dose, as used for risk reduction in fragility fractures, had an inhibitory effect on direct fracture healing. We propose that bisphosphonate therapy not be commenced until after the fracture has united if the fracture has been rigidly fixed and is undergoing direct osteonal healing.

Cite this article: Bone Joint J 2013;95-B:1263–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1134 - 1139
1 Aug 2011
Schindeler A Birke O Yu NYC Morse A Ruys A Baldock PA Little DG

Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair.

Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient (Nf1+/−) mice and control mice. Fractures were open and featured periosteal stripping. All mice received 10 μg rhBMP-2 delivered in a carboxymethylcellulose carrier around the fracture as an anabolic stimulus. Bisphosphonate-treated mice also received five doses of 0.02 mg/kg zoledronic acid given by intraperitoneal injection.

When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in Nf1+/− mice remained ununited at three weeks compared with 7% of controls (p < 0.001). Systemic post-operative administration of zoledronic acid halved the rate of ununited fractures to 37.5% (p < 0.07).

These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis. In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment


Bone & Joint Research
Vol. 3, Issue 5 | Pages 155 - 160
1 May 2014
Carr AJ Rees JL Ramsay CR Fitzpatrick R Gray A Moser J Dawson J Bruhn H Cooper CD Beard DJ Campbell MK

This protocol describes a pragmatic multicentre randomised controlled trial (RCT) to assess the clinical and cost effectiveness of arthroscopic and open surgery in the management of rotator cuff tears. This trial began in 2007 and was modified in 2010, with the removal of a non-operative arm due to high rates of early crossover to surgery.

Cite this article: Bone Joint Res 2014;3:155–60.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1553 - 1560
1 Dec 2007
Gaston MS Simpson AHRW

This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats.

Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group.

Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 259 - 262
1 Feb 2014
Guo KJ Zhao FC Guo Y Li FL Zhu L Zheng W

Corticosteroid use has been implicated in the development of osteonecrosis of the femoral head (ONFH). The exact mechanism and predisposing factors such as age, gender, dosage, type and combination of steroid treatment remain controversial. Between March and July 2003, a total of 539 patients with severe acute respiratory syndrome (SARS) were treated with five different types of steroid. There were 129 men (24%) and 410 women (76%) with a mean age of 33.7 years (21 to 59). Routine screening was undertaken with radiographs, MRI and/or CT to determine the incidence of ONFH.

Of the 129 male patients with SARS, 51 (39.5%) were diagnosed as suffering from ONFH, compared with only 79 of 410 female patients (19.3%). The incidence of ONFH in the patients aged between 20 and 49 years was much higher than that of the group aged between 50 and 59 years (25.9% (127 of 491) versus 6.3% (3 of 48); p = 0.018). The incidence of ONFH in patients receiving one type of steroid was 12.5% (21 of 168), which was much lower than patients receiving two different types (28.6%; 96 of 336) or three different types of steroid (37.1%; 13 of 35).

Cite this article: Bone Joint J 2014;96-B:259–62.


Bone & Joint 360
Vol. 1, Issue 2 | Pages 30 - 32
1 Apr 2012

The April 2012 Research Roundup360 looks at who is capable of being an arthroscopist, bupivacaine, triamcinolone and chondrotoxicity, reducing scarring in injured skeletal muscle, horny Goat Weed and the repair of osseous defects, platelet-derived growth factor and fracture healing, the importance of the reserve zone in a child’s growth plate, coping with advanced arthritis, hydroxyapatite and platelet-rich plasma for bone defects, and calcium phosphate and bone regeneration


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1434 - 1438
1 Oct 2005
Eckardt H Ding M Lind M Hansen ES Christensen KS Hvid I

The re-establishment of vascularity is an early event in fracture healing; upregulation of angiogenesis may therefore promote the formation of bone. We have investigated the capacity of vascular endothelial growth factor (VEGF) to stimulate the formation of bone in an experimental atrophic nonunion model.

Three groups of eight rabbits underwent a standard nonunion operation. This was followed by interfragmentary deposition of 100 μg VEGF, carrier alone or autograft.

After seven weeks, torsional failure tests and callus size confirmed that VEGF-treated osteotomies had united whereas the carrier-treated osteotomies failed to unite. The biomechanical properties of the groups treated with VEGF and autograft were identical. There was no difference in bone blood flow.

We considered that VEGF stimulated the formation of competent bone in an environment deprived of its normal vascularisation and osteoprogenitor cell supply. It could be used to enhance the healing of fractures predisposed to nonunion.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 698 - 703
1 May 2012
Soni A Tzafetta K Knight S Giannoudis PV

Controversy continues to surround the management of patients with an open fracture of the lower limb and an associated vascular injury (Gustilo type IIIC). This study reports our 15-year experience with these fractures and their outcome in 18 patients (15 male and three female). Their mean age was 30.7 years (8 to 54) and mean Mangled Extremity Severity Score (MESS) at presentation was 6.9 (3 to 10). A total of 15 lower limbs were salvaged and three underwent amputation (two immediate and one delayed). Four patients underwent stabilisation of the fracture by external fixation and 12 with an internal device. A total of 11 patients had damage to multiple arteries and eight had a vein graft. Wound cover was achieved with a pedicled flap in three and a free flap in six. Seven patients developed a wound infection and four developed nonunion requiring further surgery. At a mean follow-up of five years (4.1 to 6.6) the mean visual analogue scale for pain was 64 (10 to 90). Depression and anxiety were common. Activities were limited mainly because of pain, and the MESS was a valid predictor of the functional outcome. Distal tibial fractures had an increased rate of nonunion when associated with posterior tibial artery damage, and seven patients (39%) were not able to return to their previous occupation.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1122 - 1129
1 Aug 2007
Watanabe K Tsuchiya H Sakurakichi K Tomita K

The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone.

Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1111 - 1117
1 Aug 2011
Sewell MD Hanna SA McGrath A Aston WJS Blunn GW Pollock RC Skinner JA Cannon SR Briggs TWR

The best method of reconstruction after resection of malignant tumours of the tibial diaphysis is unknown. In the absence of any long-term studies analysing the results of intercalary endoprosthetic replacement, we present a retrospective review of 18 patients who underwent limb salvage using a tibial diaphyseal endoprosthetic replacement following excision of a malignant bone tumour. There were ten men and eight women with a mean age of 42.5 years (16 to 76). Mean follow-up was 58.5 months (20 to 141) for all patients and 69.3 months (20 to 141) for the 12 patients still alive. Cumulative patient survival was 59% (95% confidence interval (CI) 32 to 84) at five years. Implant survival was 63% (95% CI 35 to 90) at ten years. Four patients required revision to a proximal tibial replacement at a mean follow-up of 29 months (10 to 54). Complications included metastases in five patients, aseptic loosening in four, peri-prosthetic fracture in two, infection in one and local recurrence in one. The mean Musculoskeletal Tumor Society score and the mean Toronto Extremity Salvage Score were 23 (17 to 28) and 74% (53 to 91), respectively.

Although rates of complication and revision were high, custom-made tibial diaphyseal replacement following resection of malignant bone tumours enables early return to function and provides an attractive alternative to other surgical options, without apparent compromise of patient survival.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 695 - 699
1 May 2011
Spiro AS Babin K Lipovac S Stenger P Mladenov K Rupprecht M Rueger JM Stuecker R

The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) for the treatment of congenital pseudarthrosis of the tibia has been investigated in only one previous study, with promising results. The aim of this study was to determine whether rhBMP-2 might improve the outcome of this disorder. We reviewed the medical records of five patients with a mean age of 7.4 years (2.3 to 21) with congenital pseudarthrosis of the tibia who had been treated with rhBMP-2 and intramedullary rodding. Ilizarov external fixation was also used in four of these patients. Radiological union of the pseudarthrosis was evident in all of them at a mean of 3.5 months (3.2 to 4) post-operatively. The Ilizarov device was removed after a mean of 4.2 months (3.0 to 5.3). These results indicate that treatment of congenital pseudarthrosis of the tibia using rhBMP-2 in combination with intramedullary stabilisation and Ilizarov external fixation may improve the initial rate of union and reduce the time to union.

Further studies with more patients and longer follow-up are necessary to determine whether this surgial procedure may significantly enhance the outcome of congenital pseudarthrosis of the tibia, considering the refracture rate (two of five patients) in this small case series.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 896 - 902
1 Jul 2005
Hernigou P Poignard A Manicom O Mathieu G Rouard H


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 329 - 334
1 Mar 2010
Cox G Einhorn TA Tzioupis C Giannoudis PV

Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation.

Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response.

The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate fracture healing must not be ignored.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 395 - 400
1 Mar 2009
Krieg AH Mani M Speth BM Stalley PD

We review the treatment of pelvic Ewing’s sarcoma by the implantation of extracorporeally-irradiated (ECI) autografts and compare the outcome with that of other reported methods.

We treated 13 patients with ECI autografts between 1994 and 2004. There were seven males and six females with a median age of 15.7 years (interquartile range (IQR) 12.2 to 21.7). At a median follow-up of five years (IQR 1.8 to 7.4), the disease-free survival was 69% overall, and 75% if one patient with local recurrence after initial treatment elsewhere was excluded. Four patients died from distant metastases at a mean of 17 months (13 to 23). There were three complications which required operative intervention; one was a deep infection which required removal of the graft. The functional results gave a mean Musculoskeletal Tumor Society score of 85% (60% to 97%), a mean Toronto extremity salvage score of 86% (69% to 100%) and a mean Harris hip score of 92 (67 to 100).

We conclude that ECI grafting is a suitable form of treatment for localised and resectable pelvic Ewing’s sarcoma.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 988 - 994
1 Aug 2008
Richardson J Hill AM Johnston CJC McGregor A Norrish AR Eastwood D Lavy CBD

Highly active anti-retroviral therapy has transformed HIV into a chronic disease with a long-term asymptomatic phase. As a result, emphasis is shifting to other effects of the virus, aside from immunosuppression and mortality. We have reviewed the current evidence for an association between HIV infection and poor fracture healing.

The increased prevalence of osteoporosis and fragility fractures in HIV patients is well recognised. The suggestion that this may be purely as a result of highly active anti-retroviral therapy has been largely rejected. Apart from directly impeding cellular function in bone remodelling, HIV infection is known to cause derangement in the levels of those cytokines involved in fracture healing (particularly tumour necrosis factor-α) and appears to impair the blood supply of bone.

Many other factors complicate this issue, including a reduced body mass index, suboptimal nutrition, the effects of anti-retroviral drugs and the avoidance of operative intervention because of high rates of wound infection. However, there are sound molecular and biochemical hypotheses for a direct relationship between HIV infection and impaired fracture healing, and the rewards for further knowledge in this area are extensive in terms of optimised fracture management, reduced patient morbidity and educated resource allocation. Further investigation in this area is overdue.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 400 - 404
1 Mar 2008
Johansson HR Skripitz R Aspenberg P

We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N vs 81 N; bone volume density 19% vs 20%). Treatment with PTH for two weeks followed by pamidronate almost doubled the pull-out force (152 N; p < 0.001) and the bone volume density (37%; ANOVA, p < 0.001). Pamidronate alone did not have this effect (89 N and 25%, respectively). Thus, the deterioration can be blocked by bisphosphonates. The clinical implications are discussed.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 116 - 118
1 Jan 2006
Fabeck L Ghafil D Gerroudj M Baillon R Delincé P

We describe a 13-year-old boy with atrophic tibial pseudarthrosis associated with neurofibromatosis who had undergone nine unsuccessful operations. Eventually, union was obtained by the use of bone morphogenetic protein 7 in conjunction with intramedullary stabilisation and autologous bone graft.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1253 - 1260
1 Sep 2007
Karachalios T Boursinos L Poultsides L Khaldi L Malizos KN

We have evaluated the effect of the short-term administration of low therapeutic doses of modern COX-2 inhibitors on the healing of fractures.

A total of 40 adult male New Zealand rabbits were divided into five groups. A mid-diaphyseal osteotomy of the right ulna was performed and either normal saline, prednisolone, indometacin, meloxicam or rofecoxib was administered for five days. Radiological, biomechanical and histomorphometric evaluation was performed at six weeks.

In the group in which the highly selective anti-COX-2 agent, rofecoxib, was used the incidence of radiologically-incomplete union was similar to that in the control group. All the biomechanical parameters were statistically significantly lower in both the prednisolone and indometacin (p = 0.01) and in the meloxicam (p = 0.04) groups compared with the control group. Only the fracture load values were found to be statistically significantly lower (p = 0.05) in the rofecoxib group. Histomorphometric parameters were adversely affected in all groups with the specimens of the rofecoxib group showing the least negative effect.

Our findings indicated that the short-term administration of low therapeutic doses of a highly selective COX-2 inhibitor had a minor negative effect on bone healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 121 - 126
1 Jan 2007
Jensen TB Overgaard S Lind M Rahbek O Bünger C Søballe K

Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1.

After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own.

ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 680 - 684
1 May 2008
Simon DWN Clarkin CE Das-Gupta V Rawlinson SCF Emery RJ Pitsillides AA

We examined cultured osteoblasts derived from paired samples from the greater tuberosity and acromion from eight patients with large chronic tears of the rotator cuff.

We found that osteoblasts from the tuberosity had no apparent response to mechanical stimulation, whereas those derived from the acromion showed an increase in alkaline phosphatase activity and nitric oxide release which is normally a response of bone cells to mechanical strain. By contrast, we found that cells from both regions were able to respond to dexamethasone, a well-established promoter of osteoblastic differentiation, with the expected increase in alkaline phosphatase activity.

Our findings indicate that the failure of repair of the rotator cuff may be due, at least in part, to a compromised capacity for mechanoadaptation within the greater tuberosity. It remains to be seen whether this apparent decrease in the sensitivity of bone cells to mechanical stimulation is the specific consequence of the reduced load-bearing history of the greater tuberosity in these patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 271 - 277
1 Feb 2009
Toms AD Barker RL McClelland D Chua L Spencer-Jones R Kuiper J

The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect.

Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined.

The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 827 - 832
1 Jul 2008
Rees JL

This review discusses the pathogenesis and surgical treatment of tears of the rotator cuff.