Advertisement for orthosearch.org.uk
Results 1 - 20 of 1699
Results per page:
Bone & Joint Open
Vol. 5, Issue 10 | Pages 944 - 952
25 Oct 2024
Deveza L El Amine MA Becker AS Nolan J Hwang S Hameed M Vaynrub M

Aims. Treatment of high-grade limb bone sarcoma that invades a joint requires en bloc extra-articular excision. MRI can demonstrate joint invasion but is frequently inconclusive, and its predictive value is unknown. We evaluated the diagnostic accuracy of direct and indirect radiological signs of intra-articular tumour extension and the performance characteristics of MRI findings of intra-articular tumour extension. Methods. We performed a retrospective case-control study of patients who underwent extra-articular excision for sarcoma of the knee, hip, or shoulder from 1 June 2000 to 1 November 2020. Radiologists blinded to the pathology results evaluated preoperative MRI for three direct signs of joint invasion (capsular disruption, cortical breach, cartilage invasion) and indirect signs (e.g. joint effusion, synovial thickening). The discriminatory ability of MRI to detect intra-articular tumour extension was determined by receiver operating characteristic analysis. Results. Overall, 49 patients underwent extra-articular excision. The area under the curve (AUC) ranged from 0.65 to 0.76 for direct signs of joint invasion, and was 0.83 for all three combined. In all, 26 patients had only one to two direct signs of invasion, representing an equivocal result. In these patients, the AUC was 0.63 for joint effusion and 0.85 for synovial thickening. When direct signs and synovial thickening were combined, the AUC was 0.89. Conclusion. MRI provides excellent discrimination for determining intra-articular tumour extension when multiple direct signs of invasion are present. When MRI results are equivocal, assessment of synovial thickening increases MRI’s discriminatory ability to predict intra-articular joint extension. These results should be interpreted in the context of the study’s limitations. The inclusion of only extra-articular excisions enriched the sample for true positive cases. Direct signs likely varied with tumour histology and location. A larger, prospective study of periarticular bone sarcomas with spatial correlation of histological and radiological findings is needed to validate these results before their adoption in clinical practice. Cite this article: Bone Jt Open 2024;5(10):944–952


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 657 - 662
1 Jun 2023
Meaike JJ Meaike JD Collins MS Bishop AT Shin AY

Aims. The benefit of MRI in the preoperative assessment of scaphoid proximal fragment vascularity remains controversial. The purpose of this study is to compare preoperative MRI findings to intraoperative bleeding of the proximal scaphoid. Methods. A retrospective review of 102 patients who underwent surgery for scaphoid nonunion between January 2000 and December 2020 at a single institution were identified. Inclusion criteria were: isolated scaphoid nonunion; preoperative MRI assessing the proximal fragment vascularity; and operative details of the vascularity of the proximal fragment with the tourniquet deflated. MRI results and intraoperative findings were dichotomized as either ‘yes’ or ‘no’ for the presence of vascularity. A four-fold contingency table was used to analyze the utility of preoperative MRI with 95% confidence intervals. Relative risk was calculated for subgroups to analyze the association between variables and MRI accuracy. Results. Preoperative MRI identified 55 proximal scaphoid fragments with ischaemia and 47 with vascularized proximal fragments. After the proximal fragment was prepared, the tourniquet was deflated and assessed for bleeding; 63 proximal fragments had no bleeding and 39 demonstrated bleeding. MRI was not reliable or accurate in the assessment of proximal fragment vascularity when compared with intraoperative assessment of bleeding. No patient or MRI factors were identified to have a statistical impact on MRI accuracy. Conclusion. Current preoperative MRI protocols and diagnostic criteria do not provide a high degree of correlation with observed intraoperative assessment of proximal fragment bleeding. While preoperative MRI may assist in surgical planning, intraoperative assessment remains the best means for assessing proximal fragment vascularity in scaphoid nonunion. Future efforts should focus on the development of objective measures of osseous blood flow that may be performed intraoperatively. Cite this article: Bone Joint J 2023;105-B(6):657–662


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 920
18 Nov 2022
Dean BJF Berridge A Berkowitz Y Little C Sheehan W Riley N Costa M Sellon E

Aims. The evidence demonstrating the superiority of early MRI has led to increased use of MRI in clinical pathways for acute wrist trauma. The aim of this study was to describe the radiological characteristics and the inter-observer reliability of a new MRI based classification system for scaphoid injuries in a consecutive series of patients. Methods. We identified 80 consecutive patients with acute scaphoid injuries at one centre who had presented within four weeks of injury. The radiographs and MRI scans were assessed by four observers, two radiologists, and two hand surgeons, using both pre-existing classifications and a new MRI based classification tool, the Oxford Scaphoid MRI Assessment Rating Tool (OxSMART). The OxSMART was used to categorize scaphoid injuries into three grades: contusion (grade 1); unicortical fracture (grade 2); and complete bicortical fracture (grade 3). Results. In total there were 13 grade 1 injuries, 11 grade 2 injuries, and 56 grade 3 injuries in the 80 consecutive patients. The inter-observer reliability of the OxSMART was substantial (Kappa = 0.711). The inter-observer reliability of detecting an obvious fracture was moderate for radiographs (Kappa = 0.436) and MRI (Kappa = 0.543). Only 52% (29 of 56) of the grade 3 injuries were detected on plain radiographs. There were two complications of delayed union, both of which occurred in patients with grade 3 injuries, who were promptly treated with cast immobilization. There were no complications in the patients with grade 1 and 2 injuries and the majority of these patients were treated with early mobilization as pain allowed. Conclusion. This MRI based classification tool, the OxSMART, is reliable and clinically useful in managing patients with acute scaphoid injuries. Cite this article: Bone Jt Open 2022;3(11):913–920


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1343 - 1351
1 Dec 2022
Karlsson T Försth P Skorpil M Pazarlis K Öhagen P Michaëlsson K Sandén B

Aims. The aims of this study were first, to determine if adding fusion to a decompression of the lumbar spine for spinal stenosis decreases the rate of radiological restenosis and/or proximal adjacent level stenosis two years after surgery, and second, to evaluate the change in vertebral slip two years after surgery with and without fusion. Methods. The Swedish Spinal Stenosis Study (SSSS) was conducted between 2006 and 2012 at five public and two private hospitals. Six centres participated in this two-year MRI follow-up. We randomized 222 patients with central lumbar spinal stenosis at one or two adjacent levels into two groups, decompression alone and decompression with fusion. The presence or absence of a preoperative spondylolisthesis was noted. A new stenosis on two-year MRI was used as the primary outcome, defined as a dural sac cross-sectional area ≤ 75 mm. 2. at the operated level (restenosis) and/or at the level above (proximal adjacent level stenosis). Results. A total of 211 patients underwent surgery at a mean age of 66 years (69% female): 103 were treated by decompression with fusion and 108 by decompression alone. A two-year MRI was available for 176 (90%) of the eligible patients. A new stenosis at the operated and/or adjacent level occurred more frequently after decompression and fusion than after decompression alone (47% vs 29%; p = 0.020). The difference remained in the subgroup with a preoperative spondylolisthesis, (48% vs 24%; p = 0.020), but did not reach significance for those without (45% vs 35%; p = 0.488). Proximal adjacent level stenosis was more common after fusion than after decompression alone (44% vs 17%; p < 0.001). Restenosis at the operated level was less frequent after fusion than decompression alone (4% vs 14%; p = 0.036). Vertebral slip increased by 1.1 mm after decompression alone, regardless of whether a preoperative spondylolisthesis was present or not. Conclusion. Adding fusion to a decompression increased the rate of new stenosis on two-year MRI, even when a spondylolisthesis was present preoperatively. This supports decompression alone as the preferred method of surgery for spinal stenosis, whether or not a degenerative spondylolisthesis is present preoperatively. Cite this article: Bone Joint J 2022;104-B(12):1343–1351


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1242 - 1248
1 Nov 2022
Yang X Arts MP Bartels RHMA Vleggeert-Lankamp CLA

Aims. The aim of this study was to investigate whether the type of cervical disc herniation influences the severity of symptoms at the time of presentation, and the outcome after surgical treatment. Methods. The type and extent of disc herniation at the time of presentation in 108 patients who underwent anterior discectomy for cervical radiculopathy were analyzed on MRI, using a four-point scale. These were dichotomized into disc bulge and disc herniation groups. Clinical outcomes were evaluated using the Neck Disability Index (NDI), 36-Item Short Form Survey (SF-36), and a visual analogue scale (VAS) for pain in the neck and arm at baseline and two years postoperatively. The perceived recovery was also assessed at this time. Results. At baseline, 46 patients had a disc bulge and 62 had a herniation. There was no significant difference in the mean NDI and SF-36 between the two groups at baseline. Those in the disc bulge group had a mean NDI of 44.6 (SD 15.2) compared with 43.8 (SD 16.0) in the herniation group (p = 0.799), and a mean SF-36 of 59.2 (SD 6.9) compared with 59.4 (SD 7.7) (p = 0.895). Likewise, there was no significant difference in the incidence of disabling arm pain in the disc bulge and herniation groups (84% vs 73%; p = 0.163), and no significant difference in the incidence of disabling neck pain in the two groups (70.5% (n = 31) vs 63% (n = 39); p = 0.491). At two years after surgery, no significant difference was found in any of the clinical parameters between the two groups. Conclusion. In patients with cervical radiculopathy, the type and extent of disc herniation measured on MRI prior to surgery correlated neither to the severity of the symptoms at presentation, nor to clinical outcomes at two years postoperatively. Cite this article: Bone Joint J 2022;104-B(11):1242–1248


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims. Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM. Methods. This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery. Results. A total of 2,114 individuals aged 64.6 years (SD 11.9) who underwent surgery from March 2009 to December 2016 were studied. The most optimal cut-off canal diameters for DcSS are: C3 < 12.9 mm, C4 < 11.8 mm, C5 < 11.9 mm, C6 < 12.3 mm, and C7 < 13.3 mm. Overall, 13.0% (262 of 2,019) of the population-based cohort had multilevel DcSS. Multilevel DcSS (odds ratio (OR) 6.12 (95% CI 3.97 to 9.42); p < 0.001) and male sex (OR 4.06 (95% CI 2.55 to 6.45); p < 0.001) were predictors of developing DCM. Conclusion. This is the first MRI-based study for defining DcSS with multilevel canal narrowing. Level-specific cut-off canal diameters for DcSS can be used for early identification of individuals at risk of developing DCM. Individuals with DcSS at ≥ three levels and male sex are recommended for close monitoring or early intervention to avoid traumatic spinal cord injuries from stenosis. Cite this article: Bone Joint J 2024;106-B(11):1333–1341


Bone & Joint Open
Vol. 2, Issue 6 | Pages 447 - 453
1 Jun 2021
Dean BJF Little C Riley ND Sellon E Sheehan W Burford J Hormbrey P Costa ML

Aims. To determine the role of early MRI in the management of suspected scaphoid fractures. Methods. A total of 337 consecutive patients presenting to an emergency department (ED) following wrist trauma over a 12-month period were prospectively included in this service evaluation project. MRI was not required in 62 patients with clear diagnoses, and 17 patients were not managed as per pathway, leaving a total of 258 patients with normal scaphoid series radiographs who were then referred directly from ED for an acute wrist MRI scan. Patient demographics, clinical details, outcomes, and complications were recorded at a minimum of a year following injury. Results. The median time from injury to ED presentation was one day and the median number of positive clinical signs was two out of three (snuffbox tenderness, tubercle tenderness, pain on telescoping). Of 258 patients referred for acute MRI, 208 scans were performed as 50 patients either did not tolerate (five patients) or did not attend their scan (45 patients). MRI scans demonstrated scaphoid fracture (13%), fracture of another bone (22%), scaphoid contusion (6%), other contusion/ligamentous injury (20%), or solely degenerative pathology (10%). Only 29% of scans showed no abnormality. Almost 50% of those undergoing MRI (100 patients) were discharged by ED with advice, with only one re-presentation. Of the 27 undisplaced occult scaphoid fractures, despite prompt cast immobilization, two experienced delayed union which was successfully treated with surgery. Conclusion. The use of MRI direct from ED enables prompt diagnosis and the early discharge of a large proportion of patients with normal radiographs following wrist trauma. Cite this article: Bone Jt Open 2021;2(6):447–453


Bone & Joint Open
Vol. 2, Issue 8 | Pages 569 - 575
1 Aug 2021
Bouguennec N Robinson J Douiri A Graveleau N Colombet PD

Aims. MRI has been suggested as an objective method of assessing anterior crucate ligament (ACL) graft “ligamentization” after reconstruction. It has been proposed that the MRI appearances could be used as an indicator of graft maturity and used as part of a return-to-sport assessment. The aim of this study was to evaluate the correlation between MRI graft signal and postoperative functional scores, anterior knee laxity, and patient age at operation. Methods. A consecutive cohort of 149 patients who had undergone semitendinosus autograft ACL reconstruction, using femoral and tibial adjustable loop fixations, were evaluated retrospectively postoperatively at two years. All underwent MRI analysis of the ACL graft, performed using signal-to-noise quotient (SNQ) and the Howell score. Functional outcome scores (Lysholm, Tegner, International Knee Documentation Committee (IKDC) subjective, and IKDC objective) were obtained and all patients underwent instrumented side-to-side anterior laxity differential laxity testing. Results. Two-year postoperative mean outcome scores were: Tegner 6.5 (2 to 10); Lysholm 89.8 (SD 10.4; 52 to 100); and IKDC subjective 86.8 (SD 11.8; 51 to 100). The objective IKDC score was 86% A (128 patients), 13% B (19 patients), and 1% C (two patients). Mean side-to-side anterior laxity difference (134 N force) was 0.6 mm (SD 1.8; -4.1 to 5.6). Mean graft SNQ was 2.0 (SD 3.5; -14 to 17). Graft Howell scores were I (61%, 91 patients), II (25%, 37 patients), III (13%, 19 patients), and IV (1%, two patients). There was no correlation between either Howell score or SNQ with instrumented anterior or Lysholm, Tegner, and IKDC scores, nor was any correlation found between patient age and ACL graft SNQ or Howell score. Conclusion. The two-year postoperative MRI appearances of four-strand, semitendinosus ACL autografts (as measured by SNQ and Howell score) do not appear to have a relationship with postoperative functional scores, instrumented anterior laxity, or patient age at surgery. Other tools for analysis of graft maturity should be developed. Cite this article: Bone Jt Open 2021;2(8):569–575


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 971 - 975
1 May 2021
Hurley P Azzopardi C Botchu R Grainger M Gardner A

Aims. The aim of this study was to assess the reliability of using MRI scans to calculate the Spinal Instability Neoplastic Score (SINS) in patients with metastatic spinal cord compression (MSCC). Methods. A total of 100 patients were retrospectively included in the study. The SINS score was calculated from each patient’s MRI and CT scans by two consultant musculoskeletal radiologists (reviewers 1 and 2) and one consultant spinal surgeon (reviewer 3). In order to avoid potential bias in the assessment, MRI scans were reviewed first. Bland-Altman analysis was used to identify the limits of agreement between the SINS scores from the MRI and CT scans for the three reviewers. Results. The limit of agreement between the SINS score from the MRI and CT scans for the reviewers was -0.11 for reviewer 1 (95% CI 0.82 to -1.04), -0.12 for reviewer 2 (95% CI 1.24 to -1.48), and -0.37 for reviewer 3 (95% CI 2.35 to -3.09). The use of MRI tended to increase the score when compared with that using the CT scan. No patient having their score calculated from MRI scans would have been classified as stable rather than intermediate or unstable when calculated from CT scans, potentially leading to suboptimal care. Conclusion. We found that MRI scans can be used to calculate the SINS score reliably, compared with the score from CT scans. The main difference between the scores derived from MRI and CT was in defining the type of bony lesion. This could be made easier by knowing the site of the primary tumour when calculating the score, or by using inverted T1-volumetric interpolated breath-hold examination MRI to assess the bone more reliably, similar to using CT. Cite this article: Bone Joint J 2021;103-B(5):971–975


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 501 - 505
1 Apr 2020
Gnanasekaran R Beresford-Cleary N Aboelmagd T Aboelmagd K Rolton D Hughes R Seel E Blagg S

Aims. Early cases of cauda equina syndrome (CES) often present with nonspecific symptoms and signs, and it is recommended that patients undergo emergency MRI regardless of the time since presentation. This creates substantial pressure on resources, with many scans performed to rule out cauda equina rather than confirm it. We propose that compression of the cauda equina should be apparent with a limited sequence (LS) scan that takes significantly less time to perform. Methods. In all, 188 patients with suspected CES underwent a LS lumbosacral MRI between the beginning of September 2017 and the end of July 2018. These images were read by a consultant musculoskeletal radiologist. All images took place on a 3T or 1.5T MRI scanner at Stoke Mandeville Hospital, Aylesbury, UK, and Royal Berkshire Hospital, Reading, UK. Results. The 188 patients, all under the age of 55 years, underwent 196 LS lumbosacral MRI scans for suspected CES. Of these patients, 14 had cauda equina compression and underwent emergency decompression. No cases of CES were missed. Patients spent a mean 9.9 minutes (8 to 10) in the MRI scanner. Conclusion. Our results suggest that a LS lumbosacral MRI could be used to diagnose CES safely in patients under the age of 55 years, but that further research is needed to assess safety and efficacy of this technique before changes to existing protocols can be recommended. In addition, work is needed to assess if LS MRIs can be used throughout the spine and if alternative pathology is being considered. Cite this article: Bone Joint J 2020;102-B(4):501–505


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1578 - 1584
1 Dec 2019
Batailler C Weidner J Wyatt M Pfluger D Beck M

Aims. A borderline dysplastic hip can behave as either stable or unstable and this makes surgical decision making challenging. While an unstable hip may be best treated by acetabular reorientation, stable hips can be treated arthroscopically. Several imaging parameters can help to identify the appropriate treatment, including the Femoro-Epiphyseal Acetabular Roof (FEAR) index, measured on plain radiographs. The aim of this study was to assess the reliability and the sensitivity of FEAR index on MRI compared with its radiological measurement. Patients and Methods. The technique of measuring the FEAR index on MRI was defined and its reliability validated. A retrospective study assessed three groups of 20 patients: an unstable group of ‘borderline dysplastic hips’ with lateral centre edge angle (LCEA) less than 25° treated successfully by periacetabular osteotomy; a stable group of ‘borderline dysplastic hips’ with LCEA less than 25° treated successfully by impingement surgery; and an asymptomatic control group with LCEA between 25° and 35°. The following measurements were performed on both standardized radiographs and on MRI: LCEA, acetabular index, femoral anteversion, and FEAR index. Results. The FEAR index showed excellent intraobserver and interobserver reliability on both MRI and radiographs. The FEAR index was more reliable on radiographs than on MRI. The FEAR index on MRI was lower in the stable borderline group (mean -4.2° (. sd. 9.1°)) compared with the unstable borderline group (mean 7.9° (. sd. 6.8°)). With a FEAR index cut-off value of 2°, 90% of patients were correctly identified as stable or unstable using the radiological FEAR index, compared with 82.5% using the FEAR index on MRI. The FEAR index was a better predictor of instability on plain radiographs than on MRI. Conclusion. The FEAR index measured on MRI is less reliable and less sensitive than the FEAR index measured on radiographs. The cut-off value of 2° for radiological FEAR index predicted hip stability with 90% probability. Cite this article: Bone Joint J 2019;101-B:1578–1584


Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims. Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. Methods. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle. Results. In squatting, we found significantly decreased anterior femoroacetabular clearance in painful hips with cam and/or pincer morphologies (mean -11.3° (SD 19.2°)) compared to pain-free hips with cam and/or pincer morphologies (mean 8.5° (SD 14.6°); p = 0.022) and controls (mean 18.6° (SD 8.5°); p < 0.001). In sitting flexion, adduction, and internal rotation, we found significantly decreased anterior clearance in both painful (mean -15.2° (SD 15.3°); p = 0.002) and painfree hips (mean -4.7° (SD 13°); p = 0.010) with cam and/pincer morphologies compared to the controls (mean 7.1° (SD 5.9°)). Conclusion. Our results support the anterior femoroacetabular impingement pathomechanism in hips with cam and/or pincer morphologies and highlight the effect of posture on this pathomechanism. Cite this article: Bone Jt Open 2021;2(11):988–996


Bone & Joint Research
Vol. 2, Issue 1 | Pages 9 - 17
1 Jan 2013
Xia Y

This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T. 1. , T. 2. and T. 1ρ. ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1631 - 1636
1 Dec 2014
Parkkinen M Madanat R Mäkinen TJ Mustonen A Koskinen SK Lindahl J

The role of arthroscopy in the treatment of soft-tissue injuries associated with proximal tibial fractures remains debatable. Our hypothesis was that MRI over-diagnoses clinically relevant associated soft-tissue injuries. This prospective study involved 50 consecutive patients who underwent surgical treatment for a split-depression fracture of the lateral tibial condyle (AO/OTA type B3.1). The mean age of patients was 50 years (23 to 86) and 27 (54%) were female. All patients had MRI and arthroscopy. Arthroscopy identified 12 tears of the lateral meniscus, including eight bucket-handle tears that were sutured and four that were resected, as well as six tears of the medial meniscus, of which five were resected. Lateral meniscal injuries were diagnosed on MRI in four of 12 patients, yielding an overall sensitivity of 33% (95% confidence interval (CI) 11 to 65). Specificity was 76% (95% CI 59 to 88), with nine tears diagnosed among 38 menisci that did not contain a tear. MRI identified medial meniscal injuries in four of six patients, yielding an overall sensitivity of 67% (95% CI 24 to 94). Specificity was 66% (95% CI 50 to 79), with 15 tears diagnosed in 44 menisci that did not contain tears. MRI appears to offer only a marginal benefit as the specificity and sensitivity for diagnosing meniscal injuries are poor in patients with a fracture. There were fewer arthroscopically-confirmed associated lesions than reported previously in MRI studies. Cite this article: Bone Joint J 2014;96-B:1631–6


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1187 - 1192
1 Sep 2012
Rakhra KS Lattanzio P Cárdenas-Blanco A Cameron IG Beaulé PE

Advanced MRI cartilage imaging such as T. 1. -rho (T1ρ) for the diagnosis of early cartilage degradation prior to morpholgic radiological changes may provide prognostic information in the management of joint disease. This study aimed first to determine the normal T1ρ profile of cartilage within the hip, and secondly to identify any differences in T1ρ profile between the normal and symptomatic femoroacetabular impingement (FAI) hip. Ten patients with cam-type FAI (seven male and three female, mean age 35.9 years (28 to 48)) and ten control patients (four male and six female, mean age 30.6 years (22 to 35)) underwent 1.5T T1ρ MRI of a single hip. Mean T1ρ relaxation times for full thickness and each of the three equal cartilage thickness layers were calculated and compared between the groups. The mean T1ρ relaxation times for full cartilage thickness of control and FAI hips were similar (37.17 ms (. sd.  9.95) and 36.71 ms (. sd. 6.72), respectively). The control group demonstrated a T1ρ value trend, increasing from deep to superficial cartilage layers, with the middle third having significantly greater T1ρ relaxation values than the deepest third (p = 0.008). The FAI group demonstrated loss of this trend. The deepest third in the FAI group demonstrated greater T1ρ relaxation values than controls (p = 0.028). These results suggest that 1.5T T1ρ MRI can detect acetabular hyaline cartilage changes in patients with FAI


Bone & Joint Research
Vol. 3, Issue 8 | Pages 241 - 245
1 Aug 2014
Kanamoto T Shiozaki Y Tanaka Y Yonetani Y Horibe S

Objectives. To evaluate the applicability of MRI for the quantitative assessment of anterior talofibular ligaments (ATFLs) in symptomatic chronic ankle instability (CAI). Methods. Between 1997 and 2010, 39 patients with symptomatic CAI underwent surgical treatment (22 male, 17 female, mean age 25.4 years (15 to 40)). In all patients, the maximum diameters of the ATFLs were measured on pre-operative T2-weighted MR images in planes parallel to the path of the ATFL. They were classified into three groups based on a previously published method with modifications: ‘normal’, diameter = 1.0 - 3.2 mm; ‘thickened’, diameter > 3.2 mm; ‘thin or absent’, diameter < 1.0 mm. Stress radiography was performed with the maximum manual force in inversion under general anaesthesia immediately prior to surgery. In surgery, ATFLs were macroscopically divided into two categories: ‘thickened’, an obvious thickened ligament and ‘thin or absent’. The imaging results were compared with the macroscopic results that are considered to be of a gold standard. Results. Agreement was reached when comparison was made between groups, based on MRI and macroscopic findings. ATFLs were abnormal in all 39 cases and classified as ten ‘thickened’ and 29 ‘thin or absent’. As to talar tilt stress radiography, a clear cut-off angle, which would allow discrimination between ‘thickened’ and ‘thin or absent’ patients, was not identified. Conclusion. MRI is valuable as a pre-operative assessment tool that can provide the quantitative information of ATFLs in patients with CAI. Cite this article Bone Joint Res 2014;3:241–5


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 121 - 128
1 Jan 2015
Kang S Han I Hong SH Cho HS Kim W Kim H

Cancellous allograft bone chips are commonly used in the reconstruction of defects in bone after removal of benign tumours. We investigated the MRI features of grafted bone chips and their change over time, and compared them with those with recurrent tumour. We retrospectively reviewed 66 post-operative MRIs from 34 patients who had undergone curettage and grafting with cancellous bone chips to fill the defect after excision of a tumour. All grafts showed consistent features at least six months after grafting: homogeneous intermediate or low signal intensities with or without scattered hyperintense foci (speckled hyperintensities) on T1 images; high signal intensities with scattered hypointense foci (speckled hypointensities) on T2 images, and peripheral rim enhancement with or without central heterogeneous enhancements on enhanced images. Incorporation of the graft occurred from the periphery to the centre, and was completed within three years. Recurrent lesions consistently showed the same signal intensities as those of pre-operative MRIs of the primary lesions. There were four misdiagnoses, three of which were chondroid tumours. We identified typical MRI features and clarified the incorporation process of grafted cancellous allograft bone chips. The most important characteristics of recurrent tumours were that they showed the same signal intensities as the primary tumours. It might sometimes be difficult to differentiate grafted cancellous allograft bone chips from a recurrent chondroid tumour. Cite this article: Bone Joint J 2015;97-B:121–8


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1209 - 1215
1 Sep 2012
Murakami AM Hash TW Hepinstall MS Lyman S Nestor BJ Potter HG

Component malalignment can be associated with pain following total knee replacement (TKR). Using MRI, we reviewed 50 patients with painful TKRs and compared them with a group of 16 asymptomatic controls to determine the feasibility of using MRI in evaluating the rotational alignment of the components. Using the additional soft-tissue detail provided by this modality, we also evaluated the extent of synovitis within these two groups. Angular measurements were based on the femoral transepicondylar axis and tibial tubercle. Between two observers, there was very high interobserver agreement in the measurements of all values. Patients with painful TKRs demonstrated statistically significant relative internal rotation of the femoral component (p = 0.030). There was relative internal rotation of the tibial to femoral component and combined excessive internal rotation of the components in symptomatic knees, although these results were significant only with one of the observers (p = 0.031). There was a statistically significant association between the presence and severity of synovitis and painful TKR (p < 0.001). MRI is an effective modality in evaluating component rotational alignment


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1533 - 1537
1 Nov 2013
Farshad M Aichmair A Hughes AP Herzog RJ Farshad-Amacker NA

The purpose of this study was to devise a simple but reliable radiological method of identifying a lumbosacral transitional vertebra (LSTV) with a solid bony bridge on sagittal MRI, which could then be applied to a lateral radiograph. The vertical mid-vertebral angle (VMVA) and the vertical anterior vertebral angle (VAVA) of the three most caudal segments of the lumbar spine were measured on MRI and/or on a lateral radiograph in 92 patients with a LSTV and 94 controls, and the differences per segment (Diff-VMVA and Diff-VAVA) were calculated. The Diff-VMVA of the two most caudal vertebrae was significantly higher in the control group (25° (. sd. 8) than in patients with a LSTV (type 2a+b: 16° (. sd. 9), type 3a+b: -9° (. sd. 10), type 4: -5° (. sd. 7); p < 0.001). A Diff-VMVA of ≤ +10° identified a LSTV with a solid bony bridge (type 3+4) with a sensitivity of 100% and a specificity of 89% on MRI and a sensitivity of 94% and a specificity of 74% on a lateral radiograph. A sensitivity of 100% could be achieved with a cut-off value of 28° for the Diff-VAVA, but with a lower specificity (76%) on MRI than with Diff-VMVA. Using this simple method (Diff-VMVA ≤ +10°), solid bony bridging of the posterior elements of a LSTV, and therefore the first adjacent mobile segment, can be easily identified without the need for additional imaging. Cite this article: Bone Joint J 2013;95-B:1533–7


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1328 - 1337
1 Oct 2015
Briant-Evans TW Lyle N Barbur S Hauptfleisch J Amess R Pearce AR Conn KS Stranks GJ Britton JM

We investigated the changes seen on serial metal artefact reduction magnetic resonance imaging scans (MARS-MRI) of metal-on-metal total hip arthroplasties (MoM THAs). In total 155 THAs, in 35 male and 100 female patients (mean age 70.4 years, 42 to 91), underwent at least two MRI scans at a mean interval of 14.6 months (2.6 to 57.1), at a mean of 48.2 months (3.5 to 93.3) after primary hip surgery. Scans were graded using a modification of the Oxford classification. Progression of disease was defined as an increase in grade or a minimum 10% increase in fluid lesion volume at second scan. A total of 16 hips (30%) initially classified as ‘normal’ developed an abnormality on the second scan. Of those with ‘isolated trochanteric fluid’ 9 (47%) underwent disease progression, as did 7 (58%) of ‘effusions’. A total of 54 (77%) of hips initially classified as showing adverse reactions to metal debris (ARMD) progressed, with higher rates of progression in higher grades. Disease progression was associated with high blood cobalt levels or an irregular pseudocapsule lining at the initial scan. There was no association with changes in functional scores. Adverse reactions to metal debris in MoM THAs may not be as benign as previous reports have suggested. Close radiological follow-up is recommended, particularly in high-risk groups.

Cite this article: Bone Joint J 2015;97-B:1328–37.