Advertisement for orthosearch.org.uk
Results 1 - 20 of 1181
Results per page:

Aims. Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications. Methods. In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α. Results. Both classifications showed good to excellent interobserver reliability with high α scores. The OBC classification showed a substantial intraobserver agreement (mean kappa 0.628; p < 0.005) whereas the DJC showed a moderate agreement (mean kappa 0.572; p < 0.005). There was no significant difference in the kappa values when comparing the assessments by consultants with those by registrars, in either classification system. Conclusion. This large study from a non-founding institute shows both classification systems to be reliable for classifying TD based on axial MRIs of the PFJ, with the simple-to-use OBC having a higher intraobserver reliability score than that of the DJC. Cite this article: Bone Jt Open 2023;4(7):532–538


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1041 - 1047
1 Aug 2020
Hamoodi Z Singh J Elvey MH Watts AC

Aims. The Wrightington classification system of fracture-dislocations of the elbow divides these injuries into six subtypes depending on the involvement of the coronoid and the radial head. The aim of this study was to assess the reliability and reproducibility of this classification system. Methods. This was a blinded study using radiographs and CT scans of 48 consecutive patients managed according to the Wrightington classification system between 2010 and 2018. Four trauma and orthopaedic consultants, two post CCT fellows, and one speciality registrar based in the UK classified the injuries. The seven observers reviewed preoperative radiographs and CT scans twice, with a minimum four-week interval. Radiographs and CT scans were reviewed separately. Inter- and intraobserver reliability were calculated using Fleiss and Cohen kappa coefficients. The Landis and Koch criteria were used to interpret the strength of the kappa values. Validity was assessed by calculating the percentage agreement against intraoperative findings. Results. Of the 48 patients, three (6%) had type A injury, 11 (23%) type B, 16 (33%) type B+, 16 (33%) Type C, two (4%) type D+, and none had a type D injury. All 48 patients had anteroposterior (AP) and lateral radiographs, 44 had 2D CT scans, and 39 had 3D reconstructions. The interobserver reliability kappa value was 0.52 for radiographs, 0.71 for 2D CT scans, and 0.73 for a combination of 2D and 3D reconstruction CT scans. The median intraobserver reliability was 0.75 (interquartile range (IQR) 0.62 to 0.79) for radiographs, 0.77 (IQR 0.73 to 0.94) for 2D CT scans, and 0.89 (IQR 0.77 to 0.93) for the combination of 2D and 3D reconstruction. Validity analysis showed that accuracy significantly improved when using CT scans (p = 0.018 and p = 0.028 respectively). Conclusion. The Wrightington classification system is a reliable and valid method of classifying fracture-dislocations of the elbow. CT scans are significantly more accurate than radiographs when identifying the pattern of injury, with good intra- and interobserver reproducibility. Cite this article: Bone Joint J 2020;102-B(8):1041–1047


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Zhang B Sun H Zhan Y He Q Zhu Y Wang Y Luo C

Objectives. CT-based three-column classification (TCC) has been widely used in the treatment of tibial plateau fractures (TPFs). In its updated version (updated three-column concept, uTCC), a fracture morphology-based injury mechanism was proposed for effective treatment guidance. In this study, the injury mechanism of TPFs is further explained, and its inter- and intraobserver reliability is evaluated to perfect the uTCC. Methods. The radiological images of 90 consecutive TPF patients were collected. A total of 47 men (52.2%) and 43 women (47.8%) with a mean age of 49.8 years (. sd. 12.4; 17 to 77) were enrolled in our study. Among them, 57 fractures were on the left side (63.3%) and 33 were on the right side (36.7%); no bilateral fracture existed. Four observers were chosen to classify or estimate independently these randomized cases according to the Schatzker classification, TCC, and injury mechanism. With two rounds of evaluation, the kappa values were calculated to estimate the inter- and intrareliability. Results. The overall inter- and intraobserver agreements of the injury mechanism were substantial (κ. inter. = 0.699, κ. intra. = 0.749, respectively). The initial position and the force direction, which are two components of the injury mechanism, had substantial agreement for both inter-reliability or intrareliability. The inter- and intraobserver agreements were lower in high-energy fractures (Schatzker types IV to VI; κ. inter. = 0.605, κ. intra. = 0.721) compared with low-energy fractures (Schatzker types I to III; κ. inter. = 0.81, κ. intra. = 0.832). The inter- and intraobserver agreements were relatively higher in one-column fractures (κ. inter. = 0.759, κ. intra. = 0.801) compared with two-column and three-column fractures. Conclusion. The complete theory of injury mechanism of TPFs was first put forward to make the TCC consummate. It demonstrates substantial inter- and intraobserver agreement generally. Furthermore, the injury mechanism can be promoted clinically. Cite this article: B-B. Zhang, H. Sun, Y. Zhan, Q-F. He, Y. Zhu, Y-K. Wang, C-F. Luo. Reliability and repeatability of tibial plateau fracture assessment with an injury mechanism-based concept. Bone Joint Res 2019;8:357–366. DOI: 10.1302/2046-3758.88.BJR-2018-0331.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 32 - 36
1 Jan 2012
Nho J Lee Y Kim HJ Ha Y Suh Y Koo K

A variety of radiological methods of measuring version of the acetabular component after total hip replacement (THR) have been described. The aim of this study was to evaluate the reliability and validity of six methods (those of Lewinnek; Widmer; Hassan et al; Ackland, Bourne and Uhthoff; Liaw et al; and Woo and Morrey) that are currently in use. In 36 consecutive patients who underwent THR, version of the acetabular component was measured by three independent examiners on plain radiographs using these six methods and compared with measurements using CT scans. The intra- and interobserver reliabilities of each measurement were estimated. All measurements on both radiographs and CT scans had excellent intra- and interobserver reliability and the results from each of the six methods correlated well with the CT measurements. However, measurements made using the methods of Widmer and of Ackland, Bourne and Uhthoff were significantly different from the CT measurements (both p < 0.001), whereas measurements made using the remaining four methods were similar to the CT measurements. With regard to reliability and convergent validity, we recommend the use of the methods described by Lewinnek, Hassan et al, Liaw et al and Woo and Morrey for measurement of version of the acetabular component


Bone & Joint Research
Vol. 5, Issue 8 | Pages 347 - 352
1 Aug 2016
Nuttall J Evaniew N Thornley P Griffin A Deheshi B O’Shea T Wunder J Ferguson P Randall RL Turcotte R Schneider P McKay P Bhandari M Ghert M

Objectives. The diagnosis of surgical site infection following endoprosthetic reconstruction for bone tumours is frequently a subjective diagnosis. Large clinical trials use blinded Central Adjudication Committees (CACs) to minimise the variability and bias associated with assessing a clinical outcome. The aim of this study was to determine the level of inter-rater and intra-rater agreement in the diagnosis of surgical site infection in the context of a clinical trial. Materials and Methods. The Prophylactic Antibiotic Regimens in Tumour Surgery (PARITY) trial CAC adjudicated 29 non-PARITY cases of lower extremity endoprosthetic reconstruction. The CAC members classified each case according to the Centers for Disease Control (CDC) criteria for surgical site infection (superficial, deep, or organ space). Combinatorial analysis was used to calculate the smallest CAC panel size required to maximise agreement. A final meeting was held to establish a consensus. Results. Full or near consensus was reached in 20 of the 29 cases. The Fleiss kappa value was calculated as 0.44 (95% confidence interval (CI) 0.35 to 0.53), or moderate agreement. The greatest statistical agreement was observed in the outcome of no infection, 0.61 (95% CI 0.49 to 0.72, substantial agreement). Panelists reached a full consensus in 12 of 29 cases and near consensus in five of 29 cases when CDC criteria were used (superficial, deep or organ space). A stable maximum Fleiss kappa of 0.46 (95% CI 0.50 to 0.35) at CAC sizes greater than three members was obtained. Conclusions. There is substantial agreement among the members of the PARITY CAC regarding the presence or absence of surgical site infection. Agreement on the level of infection, however, is more challenging. Additional clinical information routinely collected by the prospective PARITY trial may improve the discriminatory capacity of the CAC in the parent study for the diagnosis of infection. Cite this article: J. Nuttall, N. Evaniew, P. Thornley, A. Griffin, B. Deheshi, T. O’Shea, J. Wunder, P. Ferguson, R. L. Randall, R. Turcotte, P. Schneider, P. McKay, M. Bhandari, M. Ghert. The inter-rater reliability of the diagnosis of surgical site infection in the context of a clinical trial. Bone Joint Res 2016;5:347–352. DOI: 10.1302/2046-3758.58.BJR-2016-0036.R1


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 478 - 484
1 Apr 2020
Daniels AM Wyers CE Janzing HMJ Sassen S Loeffen D Kaarsemaker S van Rietbergen B Hannemann PFW Poeze M van den Bergh JP

Aims

Besides conventional radiographs, the use of MRI, CT, and bone scintigraphy is frequent in the diagnosis of a fracture of the scaphoid. However, which techniques give the best results remain unknown. The investigation of a new imaging technique initially requires an analysis of its precision. The primary aim of this study was to investigate the interobserver agreement of high-resolution peripheral quantitative CT (HR-pQCT) in the diagnosis of a scaphoid fracture. A secondary aim was to investigate the interobserver agreement for the presence of other fractures and for the classification of scaphoid fracture.

Methods

Two radiologists and two orthopaedic trauma surgeons evaluated HR-pQCT scans of 31 patients with a clinically-suspected scaphoid fracture. The observers were asked to determine the presence of a scaphoid or other fracture and to classify the scaphoid fracture based on the Herbert classification system. Fleiss kappa statistics were used to calculate the interobserver agreement for the diagnosis of a fracture. Intraclass correlation coefficients (ICCs) were used to assess the agreement for the classification of scaphoid fracture.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 920
18 Nov 2022
Dean BJF Berridge A Berkowitz Y Little C Sheehan W Riley N Costa M Sellon E

Aims. The evidence demonstrating the superiority of early MRI has led to increased use of MRI in clinical pathways for acute wrist trauma. The aim of this study was to describe the radiological characteristics and the inter-observer reliability of a new MRI based classification system for scaphoid injuries in a consecutive series of patients. Methods. We identified 80 consecutive patients with acute scaphoid injuries at one centre who had presented within four weeks of injury. The radiographs and MRI scans were assessed by four observers, two radiologists, and two hand surgeons, using both pre-existing classifications and a new MRI based classification tool, the Oxford Scaphoid MRI Assessment Rating Tool (OxSMART). The OxSMART was used to categorize scaphoid injuries into three grades: contusion (grade 1); unicortical fracture (grade 2); and complete bicortical fracture (grade 3). Results. In total there were 13 grade 1 injuries, 11 grade 2 injuries, and 56 grade 3 injuries in the 80 consecutive patients. The inter-observer reliability of the OxSMART was substantial (Kappa = 0.711). The inter-observer reliability of detecting an obvious fracture was moderate for radiographs (Kappa = 0.436) and MRI (Kappa = 0.543). Only 52% (29 of 56) of the grade 3 injuries were detected on plain radiographs. There were two complications of delayed union, both of which occurred in patients with grade 3 injuries, who were promptly treated with cast immobilization. There were no complications in the patients with grade 1 and 2 injuries and the majority of these patients were treated with early mobilization as pain allowed. Conclusion. This MRI based classification tool, the OxSMART, is reliable and clinically useful in managing patients with acute scaphoid injuries. Cite this article: Bone Jt Open 2022;3(11):913–920


Bone & Joint Open
Vol. 4, Issue 5 | Pages 363 - 369
22 May 2023
Amen J Perkins O Cadwgan J Cooke SJ Kafchitsas K Kokkinakis M

Aims. Reimers migration percentage (MP) is a key measure to inform decision-making around the management of hip displacement in cerebral palsy (CP). The aim of this study is to assess validity and inter- and intra-rater reliability of a novel method of measuring MP using a smart phone app (HipScreen (HS) app). Methods. A total of 20 pelvis radiographs (40 hips) were used to measure MP by using the HS app. Measurements were performed by five different members of the multidisciplinary team, with varying levels of expertise in MP measurement. The same measurements were repeated two weeks later. A senior orthopaedic surgeon measured the MP on picture archiving and communication system (PACS) as the gold standard and repeated the measurements using HS app. Pearson’s correlation coefficient (r) was used to compare PACS measurements and all HS app measurements and assess validity. Intraclass correlation coefficient (ICC) was used to assess intra- and inter-rater reliability. Results. All HS app measurements (from 5 raters at week 0 and week 2 and PACS rater) showed highly significant correlation with the PACS measurements (p < 0.001). Pearson’s correlation coefficient (r) was constantly over 0.9, suggesting high validity. Correlation of all HS app measures from different raters to each other was significant with r > 0.874 and p < 0.001, which also confirms high validity. Both inter- and intra-rater reliability were excellent with ICC > 0.9. In a 95% confidence interval for repeated measurements, the deviation of each specific measurement was less than 4% MP for single measurer and 5% for different measurers. Conclusion. The HS app provides a valid method to measure hip MP in CP, with excellent inter- and intra-rater reliability across different medical and allied health specialties. This can be used in hip surveillance programmes by interdisciplinary measurers. Cite this article: Bone Jt Open 2023;4(5):363–369


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1339 - 1344
1 Aug 2021
Jain S Mohrir G Townsend O Lamb JN Palan J Aderinto J Pandit H

Aims. This aim of this study was to assess the reliability and validity of the Unified Classification System (UCS) for postoperative periprosthetic femoral fractures (PFFs) around cemented polished taper-slip (PTS) stems. Methods. Radiographs of 71 patients with a PFF admitted consecutively at two centres between 25 February 2012 and 19 May 2020 were collated by an independent investigator. Six observers (three hip consultants and three trainees) were familiarized with the UCS. Each PFF was classified on two separate occasions, with a mean time between assessments of 22.7 days (16 to 29). Interobserver reliability for more than two observers was assessed using percentage agreement and Fleiss’ kappa statistic. Intraobserver reliability between two observers was calculated with Cohen kappa statistic. Validity was tested on surgically managed UCS type B PFFs where stem stability was documented in operation notes (n = 50). Validity was assessed using percentage agreement and Cohen kappa statistic between radiological assessment and intraoperative findings. Kappa statistics were interpreted using Landis and Koch criteria. All six observers were blinded to operation notes and postoperative radiographs. Results. Interobserver reliability percentage agreement was 58.5% and the overall kappa value was 0.442 (moderate agreement). Lowest kappa values were seen for type B fractures (0.095 to 0.360). The mean intraobserver reliability kappa value was 0.672 (0.447 to 0.867), indicating substantial agreement. Validity percentage agreement was 65.7% and the mean kappa value was 0.300 (0.160 to 0.4400) indicating only fair agreement. Conclusion. This study demonstrates that the UCS is unsatisfactory for the classification of PFFs around PTS stems, and that it has considerably lower reliability and validity than previously described for other stem types. Radiological PTS stem loosening in the presence of PFF is poorly defined and formal intraoperative testing of stem stability is recommended. Cite this article: Bone Joint J 2021;103-B(8):1339–1344


Bone & Joint Open
Vol. 5, Issue 6 | Pages 524 - 531
24 Jun 2024
Woldeyesus TA Gjertsen J Dalen I Meling T Behzadi M Harboe K Djuv A

Aims. To investigate if preoperative CT improves detection of unstable trochanteric hip fractures. Methods. A single-centre prospective study was conducted. Patients aged 65 years or older with trochanteric hip fractures admitted to Stavanger University Hospital (Stavanger, Norway) were consecutively included from September 2020 to January 2022. Radiographs and CT images of the fractures were obtained, and surgeons made individual assessments of the fractures based on these. The assessment was conducted according to a systematic protocol including three classification systems (AO/Orthopaedic Trauma Association (OTA), Evans Jensen (EVJ), and Nakano) and questions addressing specific fracture patterns. An expert group provided a gold-standard assessment based on the CT images. Sensitivities and specificities of surgeons’ assessments were estimated and compared in regression models with correlations for the same patients. Intra- and inter-rater reliability were presented as Cohen’s kappa and Gwet’s agreement coefficient (AC1). Results. We included 120 fractures in 119 patients. Compared to radiographs, CT increased the sensitivity of detecting unstable trochanteric fractures from 63% to 70% (p = 0.028) and from 70% to 76% (p = 0.004) using AO/OTA and EVJ, respectively. Compared to radiographs alone, CT increased the sensitivity of detecting a large posterolateral trochanter major fragment or a comminuted trochanter major fragment from 63% to 76% (p = 0.002) and from 38% to 55% (p < 0.001), respectively. CT improved intra-rater reliability for stability assessment using EVJ (AC1 0.68 to 0.78; p = 0.049) and for detecting a large posterolateral trochanter major fragment (AC1 0.42 to 0.57; p = 0.031). Conclusion. A preoperative CT of trochanteric fractures increased detection of unstable fractures using the AO/OTA and EVJ classification systems. Compared to radiographs, CT improved intra-rater reliability when assessing fracture stability and detecting large posterolateral trochanter major fragments. Cite this article: Bone Jt Open 2024;5(6):524–531


Bone & Joint Research
Vol. 9, Issue 5 | Pages 242 - 249
1 May 2020
Bali K Smit K Ibrahim M Poitras S Wilkin G Galmiche R Belzile E Beaulé PE

Aims. The aim of the current study was to assess the reliability of the Ottawa classification for symptomatic acetabular dysplasia. Methods. In all, 134 consecutive hips that underwent periacetabular osteotomy were categorized using a validated software (Hip2Norm) into four categories of normal, lateral/global, anterior, or posterior. A total of 74 cases were selected for reliability analysis, and these included 44 dysplastic and 30 normal hips. A group of six blinded fellowship-trained raters, provided with the classification system, looked at these radiographs at two separate timepoints to classify the hips using standard radiological measurements. Thereafter, a consensus meeting was held where a modified flow diagram was devised, before a third reading by four raters using a separate set of 74 radiographs took place. Results. Intrarater results per surgeon between Time 1 and Time 2 showed substantial to almost perfect agreement among the raters (κappa = 0.416 to 0.873). With respect to inter-rater reliability, at Time 1 and Time 2 there was substantial agreement overall between all surgeons (Time 1 κappa = 0.619; Time 2 κappa = 0.623). Posterior and anterior rating categories had moderate and fair agreement at Time 1 (posterior κappa = 0.557; anterior κappa = 0.438) and Time 2 (posterior κappa = 0.506; anterior κappa = 0.250), respectively. At Time 3, overall reliability (κappa = 0.687) and posterior and anterior reliability (posterior κappa = 0.579; anterior κappa = 0.521) improved from Time 1 and Time 2. Conclusion. The Ottawa classification system provides a reliable way to identify three categories of acetabular dysplasia that are well-aligned with surgical management. The term ‘borderline dysplasia’ should no longer be used. Cite this article: Bone Joint Res. 2020;9(5):242–249


Bone & Joint Open
Vol. 1, Issue 7 | Pages 355 - 358
7 Jul 2020
Konrads C Gonser C Ahmad SS

Aims. The Oswestry-Bristol Classification (OBC) was recently described as an MRI-based classification tool for the femoral trochlear. The authors demonstrated better inter- and intraobserver agreement compared to the Dejour classification. As the OBC could potentially provide a very useful MRI-based grading system for trochlear dysplasia, it was the aim to determine the inter- and intraobserver reliability of the classification system from the perspective of the non-founder. Methods. Two orthopaedic surgeons independently assessed 50 MRI scans for trochlear dysplasia and classified each according to the OBC. Both observers repeated the assessments after six weeks. The inter- and intraobserver agreement was determined using Cohen’s kappa statistic and S-statistic nominal and linear weights. Results. The OBC with grading into four different trochlear forms showed excellent inter- and intraobserver agreement with a mean kappa of 0.78. Conclusion. The OBC is a simple MRI-based classification system with high inter- and intraobserver reliability. It could present a useful tool for grading the severity of trochlear dysplasia in daily practice. Cite this article: Bone Joint Open 2020;1-7:355–358


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 571 - 575
1 Apr 2010
Clint SA Morris TP Shaw OM Oddy MJ Rudge B Barry M

The databases of the Picture Archiving and Communication Systems of two hospitals were searched and all children who had a lateral radiograph of the ankle during their attendance at the emergency department were identified. In 227 radiographs, Bohler’s and Gissane’s angles were measured on two separate occasions and by two separate authors to allow calculation of inter- and intra-observer variation. Intraclass correlation coefficients were used to assess the reliability of the measurements. For Bohler’s angle the overall inter-observer reliability, the intraclass correlation coefficient was 0.90 and the intra-observer reliability 0.95, giving excellent agreement. This reliability was maintained across the age groups. For Gissane’s angle, inter- and intra-observer reliability was only fair or poor across most age groups. Further analysis of the Bohler’s angle showed a significant variation in the mean angle with age. Contrary to published opinion, the angle is not uniformly lower than that of adults but varies with age, peaking towards the end of the first decade before attaining adult values. The age-related radiologic changes presented here may help in the interpretation of injuries to the hindfoot in children


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1048 - 1052
1 Aug 2006
Jerosch-Herold C Rosén B Shepstone L

Locognosia, the ability to localise touch, is one aspect of tactile spatial discrimination which relies on the integrity of peripheral end-organs as well as the somatosensory representation of the surface of the body in the brain. The test presented here is a standardised assessment which uses a protocol for testing locognosia in the zones of the hand supplied by the median and/or ulnar nerves. The test-retest reliability and discriminant validity were investigated in 39 patients with injuries to the median or ulnar nerve. Intraclass correlation coefficients were used to calculate the test-retest reliability. Discriminant validity was assessed by comparing the injured with the unaffected hand. Excellent test-retest reliability was demonstrated for the injuries to the median (intraclass correlation coefficient 0.924, 95% confidence interval 0.848 to 1.00) and the ulnar nerves (intraclass correlation coefficient 0.859, 95% confidence interval 0.693 to 1.00). The magnitude of the difference in scores between affected and unaffected hands showed good discriminant validity. For injuries to the median nerve the mean difference was 11.1 points (1 to 33; . sd. 7.4), which was statistically significant (p < 0.0001, paired t-test) and for those of the ulnar nerve it was 4.75 points (1 to 13.5; . sd. 3.16), which was also statistically significant (paired t-test, p < 0.0001). The locognosia test has excellent test-retest reliability, is a valid test of tactile spatial discrimination and should be included in the evaluation of outcome after injury to peripheral nerves


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 903 - 906
1 Jul 2009
Trickett RW Hodgson P Forster MC Robertson A

We aimed to determine the reliability, accuracy and the clinical role of digital templating in the pre-operative work-up for total knee replacement. Initially a sample of ten pre-operative digital radiographs were templated by four independent observers to determine the inter- and intra-observer reliability of the process. Digital templating was then performed on the radiographs of 40 consecutive patients undergoing total knee replacement by a consultant surgeon not involved with the operation, who was blinded to the size of the implant inserted. The Press Fit Condylar Sigma Knee system was used in all the patients. The size of the implant as judged by templating was then compared to that of the size used. Good inter- and intra-observer agreement was demonstrated for both femoral and tibial templating. However, the correct size of the implant was predicted in only 48% of the femoral and 55% of the tibial components. Albeit reproducible, digital templating does not currently predict the correct size of component often enough to be of clinical benefit


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 670 - 672
1 Jul 1998
Flinkkilä T Nikkola-Sihto A Kaarela O Päakkö E Raatikainen T

Interobserver reliability of the AO system of classification of fractures of the distal radius was assessed using plain radiographs and CT. Five observers classified 30 Colles’-type fractures using only plain radiographs; two months later they were reclassified using CT in addition. Interobserver reliability was poor in both series when detailed classification was used. By reducing the categories to five, interobserver reliability was slightly improved, but was still poor. When only two AO types were used, the reliability was moderate using plain radiographs and good to excellent with the addition of CT. The use of CT as well as plain radiographs brings interobserver reliability to a good level in assessment of the presence or absence of articular involvement, but is otherwise of minor value in improving the interobserver reliability of the AO system of classification of fractures of the distal radius


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 166 - 172
1 Feb 2016
Langlois J Hamadouche M

Previous standards for assessing the reliability of a measurement tool have lacked consistency. We reviewed the most current American Society for Testing and Materials and International Organisation for Standardisation (ISO) recommendations, and propose an algorithm for orthopaedic surgeons. When assessing a measurement tool, conditions of the experimental set-up and clear formulae used to compile the results should be strictly reported. According to these recent guidelines, accuracy is a confusing word with an overly broad meaning and should therefore be abandoned. Depending on the experimental conditions, one should be referring to bias (when the study protocol involves accepted reference values), and repeatability (sr, r) or reproducibility (SR, R). In the absence of accepted reference values, only repeatability (sr, r) or reproducibility (SR, R) should be provided. Take home message: Assessing the reliability of a measurement tool involves reporting bias, repeatability and/or reproducibility depending on the defined conditions, instead of precision or accuracy. Cite this article: Bone Joint J 2016;98-B2:166–72


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 611 - 616
1 May 2015
Shin WC Lee SM Lee KW Cho HJ Lee JS Suh KT

There is no single standardised method of measuring the orientation of the acetabular component on plain radiographs after total hip arthroplasty. We assessed the reliability and accuracy of three methods of assessing anteversion of the acetabular component for 551 THAs using the PolyWare software and the methods of Liaw et al, and of Woo and Morrey. All measurements of the three methods had excellent intra- and inter-observer reliability. The values of the PolyWare software, which determines version of the acetabular component by edge detection were regarded as the reference standard. Although the PolyWare software and the method of Liaw et al were similarly precise, the method of Woo and Morrey was significantly less accurate (p < 0.001). The method of Liaw et al seemed to be more accurate than that of Woo and Morrey when compared with the measurements using the PolyWare software. If the qualified lateral radiograph was selected, anteversion measured using the method of Woo and Morrey was considered to be relatively reliable. Cite this article: Bone Joint J 2015; 97-B:611–16


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1669 - 1673
1 Dec 2014
Van der Merwe JM Haddad FS Duncan CP

The Unified Classification System (UCS) was introduced because of a growing need to have a standardised universal classification system of periprosthetic fractures. It combines and simplifies many existing classification systems, and can be applied to any fracture around any partial or total joint replacement occurring during or after operation. Our goal was to assess the inter- and intra-observer reliability of the UCS in association with knee replacement when classifying fractures affecting one or more of the femur, tibia or patella. We used an international panel of ten orthopaedic surgeons with subspecialty fellowship training and expertise in adult hip and knee reconstruction (‘experts’) and ten residents of orthopaedic surgery in the last two years of training (‘pre-experts’). They each received 15 radiographs for evaluation. After six weeks they evaluated the same radiographs again but in a different order. . The reliability was assessed using the Kappa and weighted Kappa values. The Kappa values for inter-observer reliability for the experts and the pre-experts were 0.741 (95% confidence interval (CI) 0.707 to 0.774) and 0.765 (95% CI 0.733 to 0.797), respectively. The weighted Kappa values for intra-observer reliability for the experts and pre-experts were 0.898 (95% CI 0.846 to 0.950) and 0.878 (95% CI 0.815 to 0.942) respectively. The UCS has substantial inter-observer reliability and ‘near perfect’ intra-observer reliability when used for periprosthetic fractures in association with knee replacement in the hands of experienced and inexperienced users. Cite this article: Bone Joint J 2014;96-B:1669–73