Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1461 - 1468
1 Dec 2024
Hamoodi Z Shapiro J Sayers A Whitehouse MR Watts AC

Aims. The aim of this audit was to assess and improve the completeness and accuracy of the National Joint Registry (NJR) dataset for arthroplasty of the elbow. Methods. It was performed in two phases. In Phase 1, the completeness was assessed by comparing the NJR elbow dataset with the NHS England Hospital Episode Statistics (HES) data between April 2012 and April 2020. In order to assess the accuracy of the data, the components of each arthroplasty recorded in the NJR were compared to the type of arthroplasty which was recorded. In Phase 2, a national collaborative audit was undertaken to evaluate the reasons for unmatched data, add missing arthroplasties, and evaluate the reasons for the recording of inaccurate arthroplasties and correct them. Results. Phase 1 identified 5,539 arthroplasties in HES which did not match an arthroplasty on the NJR, and 448 inaccurate arthroplasties from 254 hospitals. Most mismatched procedures (3,960 procedures; 71%) were radial head arthroplasties (RHAs). In Phase 2, 142 NHS hospitals with 3,640 (66%) mismatched and 314 (69%) inaccurate arthroplasties volunteered to assess their records. A large proportion of the unmatched data (3,000 arthroplasties; 82%) were confirmed as being missing from the NJR. The overall rate of completeness of the NJR elbow dataset improved from 63% to 83% following phase 2, and the completeness of total elbow arthroplasty data improved to 93%. Missing RHAs had the biggest impact on the overall completeness, but through the audit the number of RHAs in the NJR nearly doubled and completeness increased from 35% to 70%. The accuracy of data was 94% and improved to 98% after correcting 212 of the 448 inaccurately recorded arthroplasties. Conclusion. The rate of completeness of the NJR total elbow arthroplasty dataset is currently 93% and the accuracy is 98%. This audit identified challenges of data capture with regard to RHAs. Collaboration with a trauma and orthopaedic trainees through the British Orthopaedic Trainee Association improved the completeness and accuracy of the NJR elbow dataset, which will improve the validity of the reports and of the associated research. Cite this article: Bone Joint J 2024;106-B(12):1461–1468


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 905 - 911
1 Aug 2023
Giannicola G Amura A Sessa P Prigent S Cinotti G

Aims. The aim of this study was to analyze how proximal radial neck resorption (PRNR) starts and progresses radiologically in two types of press-fit radial head arthroplasties (RHAs), and to investigate its clinical relevance. Methods. A total of 97 patients with RHA were analyzed: 56 received a bipolar RHA (Group 1) while 41 received an anatomical implant (Group 2). Radiographs were performed postoperatively and after three, six, nine, and 12 weeks, six, nine, 12, 18, and 24 months, and annually thereafter. PRNR was measured in all radiographs in the four radial neck quadrants. The Mayo Elbow Performance Score (MEPS), the abbreviated version of the Disabilities of the Arm, Shoulder, and Hand questionnaire (QuickDASH), and the patient-assessed American Shoulder and Elbow Surgeons score - Elbow (pASES-E) were used for the clinical assessment. Radiological signs of implant loosening were investigated. Results. The mean follow-up was six years (2 to 14). PRNR started after a mean of 7.5 weeks (SD 2.1) and progressed significantly during the first two years, by the end of which the bone resorption stabilized. PRNR was detected in 81% (n = 45) of patients in Group 1 and 88% (n = 36) in Group 2. The final mean PRNR was 3.0 mm (SD 2.3) in Group 1 and 3.7 mm (SD 2.5) in Group 2. The mean MEPS, QuickDASH, and pASES-E were 95.9 (SD 11.5), 4.4 (SD 9.2), and 94.8 (SD 10.9) in Group 1 and 92.2 (SD 16.2), 9.9 (SD 21.5), and 90.8 (SD 15) in Group 2, respectively. No significant differences were observed between groups in the clinical and radiological outcomes. No correlations were found between PRNR and the clinical results. Conclusion. PRNR after press-fit RHA is a common radiological finding that develops in the first 24 months before stabilizing definitively. PRNR does not affect the clinical results or implant survival in the mid term. Cite this article: Bone Joint J 2023;105-B(8):905–911


Bone & Joint 360
Vol. 12, Issue 5 | Pages 30 - 34
1 Oct 2023

The October 2023 Shoulder & Elbow Roundup360 looks at: Arthroscopic capsular shift surgery in patients with atraumatic shoulder joint instability: a randomized, placebo-controlled trial; Superior capsular reconstruction partially restores native glenohumeral loads in a dynamic model; Gene expression in glenoid articular cartilage varies in acute instability, chronic instability, and osteoarthritis; Intra-articular injection versus interscalene brachial plexus block for acute-phase postoperative pain management after arthroscopic shoulder surgery; Level of pain catastrophizing rehab in subacromial impingement: secondary analyses from a pragmatic randomized controlled trial (the SExSI Trial); Anterosuperior versus deltopectoral approach for primary reverse total shoulder arthroplasty: a study of 3,902 cases from the Dutch National Arthroplasty Registry with a minimum follow-up of five years; Assessment of progression and clinical relevance of stress-shielding around press-fit radial head arthroplasty: a comparative study of two implants; A number of modifiable and non-modifiable factors increase the risk for elbow medial ulnar collateral ligament injury in baseball players: a systematic review.