Advertisement for orthosearch.org.uk
Results 1 - 50 of 404
Results per page:
Bone & Joint Research
Vol. 11, Issue 5 | Pages 327 - 341
23 May 2022
Alagboso FI Mannala GK Walter N Docheva D Brochhausen C Alt V Rupp M

Aims. Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy. Methods. The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP. Results. The S. aureus-infected osteoblasts showed a significant number of intracellular bacteria colonies and an unusual higher metabolic activity (p < 0.005) compared to uninfected osteoblasts. Treatment with 8 µg/ml RMP significantly eradicated intracellular bacteria and the metabolic activity was comparable to uninfected groups. The RMP-treated infected osteoblasts revealed a significantly reduced amount of mineralized extracellular matrix (ECM) at seven days osteogenesis relative to uninfected untreated osteoblasts (p = 0.007). Prolonged osteogenesis and RMP treatment at 21 days significantly improved the ECM mineralization level. Ultrastructural images of the mineralized RMP-treated infected osteoblasts revealed viable osteoblasts and densely distributed calcium crystal deposits within the extracellular organic matrix. The expression levels of prominent bone formation genes were comparable to the RMP-treated uninfected osteoblasts. Conclusion. Intracellular S. aureus infection impaired osteoblast metabolism and function. However, treatment with low dosage of RMP eradicated the intracellular S. aureus, enabling extracellular organic matrix formation and mineralization of osteoblasts at later stage. Cite this article: Bone Joint Res 2022;11(5):327–341


Bone & Joint Research
Vol. 10, Issue 9 | Pages 611 - 618
27 Sep 2021
Ali E Birch M Hopper N Rushton N McCaskie AW Brooks RA

Aims. Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. Methods. Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. Results. Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen release (p < 0.001), and ALP expression (p = 0.009), and produced less mineral (p = 0.006) than those from the femoral neck. Osteoblasts from the tibia produced significantly less collagen (p = 0.021) and showed lower ALP expression than those from the distal femur. Conclusion. We have demonstrated for the first time an anatomical regional variation in the biological behaviours of osteoblasts on either side of the hip and knee joint. The lower osteoblast proliferation, matrix production, and mineralization from the acetabulum compared to those from the proximal femur may be reflected in differences in bone formation and implant fixation at these sites. Cite this article: Bone Joint Res 2021;10(9):611–618


Bone & Joint Research
Vol. 7, Issue 11 | Pages 601 - 608
1 Nov 2018
Hsu W Hsu W Hung J Shen W Hsu RW

Objectives. Osteoporosis is a metabolic disease resulting in progressive loss of bone mass as measured by bone mineral density (BMD). Physical exercise has a positive effect on increasing or maintaining BMD in postmenopausal women. The contribution of exercise to the regulation of osteogenesis in osteoblasts remains unclear. We therefore investigated the effect of exercise on osteoblasts in ovariectomized mice. Methods. We compared the activity of differentially expressed genes of osteoblasts in ovariectomized mice that undertook exercise (OVX+T) with those that did not (OVX), using microarray and bioinformatics. Results. Many inflammatory pathways were significantly downregulated in the osteoblasts after exercise. Meanwhile, IBSP and SLc13A5 gene expressions were upregulated in the OVX+T group. Furthermore, in in vitro assay, IBSP and SLc13A5 mRNAs were also upregulated during the osteogenic differentiation of MC3T3-E1 and 7F2 cells. Conclusion. These findings suggest that exercise may not only reduce the inflammatory environment in ovariectomized mice, indirectly suppressing the overactivated osteoclasts, but may also directly activate osteogenesis-related genes in osteoblasts. Exercise may thus prevent the bone loss caused by oestrogen deficiency through mediating the imbalance between the bone resorptive activity of osteoclasts and the bone formation activity of osteoblasts. Cite this article: W-B. Hsu, W-H. Hsu, J-S. Hung, W-J. Shen, R. W-W. Hsu. Transcriptome analysis of osteoblasts in an ovariectomized mouse model in response to physical exercise. Bone Joint Res 2018;7:601–608. DOI: 10.1302/2046-3758.711.BJR-2018-0075.R2


Bone & Joint Research
Vol. 7, Issue 2 | Pages 187 - 195
1 Feb 2018
Ziebart J Fan S Schulze C Kämmerer PW Bader R Jonitz-Heincke A

Objectives. Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed. Methods. Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated. Results. Live and dead cell numbers were higher after 25 µm sine and 50 µm triangle micromotions compared with loaded controls. Collagen type I synthesis was downregulated in respective samples. The metabolic activity and osteocalcin expression level were higher in samples treated with 25 µm micromotions compared with the loaded controls. Furthermore, static loading and micromotions decreased the osteoprotegerin/receptor activator of NF-κB ligand ratio. Conclusion. Our system enables investigation of the behaviour of bone cells at the bone-implant interface under shear stress induced by micromotions. We could demonstrate that micromotions applied under static pressure conditions have a significant impact on the activity of osteoblasts seeded on collagen scaffolds. In future studies, higher mechanical stress will be applied and different implant surface structures will be considered. Cite this article: J. Ziebart, S. Fan, C. Schulze, P. W. Kämmerer, R. Bader, A. Jonitz-Heincke. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018;7:187–195. DOI: 10.1302/2046-3758.72.BJR-2017-0228.R1


Bone & Joint Research
Vol. 9, Issue 11 | Pages 827 - 839
1 Nov 2020
Hameister R Lohmann CH Dheen ST Singh G Kaur C

Aims. This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss. Methods. TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results. Macrophages, lymphocytes, and endothelial cells displayed strong TNF-α immunoexpression in periprosthetic tissues containing metal wear debris. Colocalization of TNF-α with the macrophage marker CD68 and the pan-T cell marker CD3 confirmed TNF-α expression in these cells. Cobalt-treated MM6 cells secreted more TNF-α than control cells, reflecting the role of metal wear products in activating the TNF-α pathway in the myeloid cells. While TNF-α did not alter the immunoexpression of the TNF-receptor 1 (TNF-R1) in SaOs-2 cells, it increased the release of the soluble TNF-receptor 1 (sTNF-R1). There was also evidence for TNF-α-induced apoptosis. TNF-α further elicited the expression of the endoplasmic reticulum stress markers inositol-requiring enzyme (IRE)-1α, binding-immunoglobulin protein (BiP), and endoplasmic oxidoreductin1 (Ero1)-Lα. In addition, TNF-α decreased pro-collagen I α 1 secretion without diminishing its synthesis. TNF-α also induced an inflammatory response in SaOs-2 cells, as evidenced by the release of reactive oxygen and nitrogen species and the proinflammatory cytokine vascular endothelial growth factor. Conclusion. The results suggest a novel osteoblastic mechanism, which could be mediated by TNF-α and may be involved in metal wear debris-induced periprosthetic bone loss. Cite this article: Bone Joint Res 2020;9(11):827–839


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1022 - 1026
1 Aug 2013
O’Neill SC Queally JM Devitt BM Doran PP O’Byrne JM

Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition. Cite this article: Bone Joint J 2013;95-B:1021–5


Bone & Joint Research
Vol. 10, Issue 9 | Pages 619 - 628
27 Sep 2021
Maestro-Paramio L García-Rey E Bensiamar F Saldaña L

Aims. To investigate whether idiopathic osteonecrosis of the femoral head (ONFH) is related to impaired osteoblast activities. Methods. We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head and the intertrochanteric region of patients with idiopathic ONFH, or from the intertrochanteric region of patients with osteoarthritis (OA), and compared their viability, mineralization capacity, and secretion of paracrine factors. Results. Osteoblasts from the intertrochanteric region of patients with ONFH showed lower alkaline phosphatase (ALP) activity and mineralization capacity than osteoblasts from the same skeletal site in age-matched patients with OA, as well as lower messenger RNA (mRNA) levels of genes encoding osteocalcin and bone sialoprotein and higher osteopontin expression. In addition, osteoblasts from patients with ONFH secreted lower osteoprotegerin (OPG) levels than those from patients with OA, resulting in a higher receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) ligand (RANKL)-to-OPG ratio. In patients with ONFH, osteoblasts from the femoral head showed reduced viability and mineralized nodule formation compared with osteoblasts from the intertrochanteric region. Notably, the secretion of the pro-resorptive factors interleukin-6 and prostaglandin E. 2. as well as the RANKL-to-OPG ratio were markedly higher in osteoblast cultures from the femoral head than in those from the intertrochanteric region. Conclusion. Idiopathic ONFH is associated with a reduced mineralization capacity of osteoblasts and increased secretion of pro-resorptive factors. Cite this article: Bone Joint Res 2021;10(9):619–628


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1157 - 1163
1 Aug 2005
Peter B Zambelli P Guicheux J Pioletti DP

In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our in vitro study was designed to determine the maximum dose to which osteoblasts could be safely exposed. Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μ. m. Murine cells can be exposed to concentrations as high as 10 μ. m. . A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts


Objectives. Osteoporosis is a systemic bone metabolic disease, which often occurs among the elderly. Angelica polysaccharide (AP) is the main component of angelica sinensis, and is widely used for treating various diseases. However, the effects of AP on osteoporosis have not been investigated. This study aimed to uncover the functions of AP in mesenchymal stem cell (MSC) proliferation and osteoblast differentiation. Methods. MSCs were treated with different concentrations of AP, and then cell viability, Cyclin D1 protein level, and the osteogenic markers of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2) were examined by Cell Counting Kit-8 (CCK-8) and western blot assays, respectively. The effect of AP on the main signalling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin was determined by western blot. Following this, si-H19#1 and si-H19#2 were transfected into MSCs, and the effects of H19 on cell proliferation and osteoblast differentiation in MSCs were studied. Finally, in vivo experimentation explored bone mineral density, bone mineral content, and the ash weight and dry weight of femoral bone. Results. The results revealed that AP significantly promoted cell viability, upregulated cyclin D1 and increased RUNX2, OCN, ALP, and BMP-2 protein levels in MSCs. Moreover, we found that AP notably activated PI3K/AKT and Wnt/β-catenin signalling pathways in MSCs. Additionally, the relative expression level of H19 was upregulated by AP in a dose-dependent manner. The promoting effects of AP on cell proliferation and osteoblast differentiation were reversed by H19 knockdown. Moreover, in vivo experimentation further confirmed the promoting effect of AP on bone formation. Conclusion. These data indicate that AP could promote MSC proliferation and osteoblast differentiation by regulating H19. Cite this article: X. Xie, M. Liu, Q. Meng. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19: An animal study. Bone Joint Res 2019;8:323–332. DOI: 10.1302/2046-3758.87.BJR-2018-0223.R2


Bone & Joint Research
Vol. 7, Issue 1 | Pages 58 - 68
1 Jan 2018
Portal-Núñez S Ardura JA Lozano D Martínez de Toda I De la Fuente M Herrero-Beaumont G Largo R Esbrit P

Objectives. Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods. We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results. We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H. 2. O. 2. )-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H. 2. O. 2. on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion. These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2


Bone & Joint Research
Vol. 6, Issue 3 | Pages 154 - 161
1 Mar 2017
Liu J Li X Zhang H Gu R Wang Z Gao Z Xing L

Objectives. Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. Methods. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay. Results. The expression levels of WW Domain Containing E3 Ubiquitin Protein Ligase 1 (Wwp1), SMAD Specific E3 Ubiquitin Protein Ligase 1 (Smurf1), SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and Itch were all significantly increased in the fracture callus of WT mice, which was associated with elevated expression of NF-κB members and total ubiquitinated proteins. Callus tissue isolated from Itch KO mice expressed higher levels of osteoblast-associated genes, including Runx2, a positive regulator of osteoblast differentiation, but osteoclast-associated genes were not increased. Both NF-κB RelA and RelB proteins were found to bind to the NF-κB binding site in the mouse Itch promoter. Conclusions. Our findings indicate that Itch depletion may have a strong positive effect on osteoblast differentiation in fracture callus. Thus, ubiquitin E3 ligase Itch could be a potential target for enhancing bone fracture healing. Cite this article: J. Liu, X. Li, H. Zhang, R. Gu, Z. Wang, Z. Gao, L. Xing. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res 2017;6:154–161. DOI: 10.1302/2046-3758.63.BJR-2016-0237.R1


Bone & Joint Research
Vol. 3, Issue 7 | Pages 236 - 240
1 Jul 2014
Robubi A Berger C Schmid M Huber KR Engel A Krugluger W

Objectives. Effects of insulin-like growth factor 1 (IGF1), fibroblast growth factor 2 (FGF2) and bone morphogenetic protein 2 (BMP2) on the expression of genes involved in the proliferation and differentiation of osteoblasts in culture were analysed. The best sequence of growth factor addition that induces expansion of cells before their differentiation was sought. Methods. Primary human osteoblasts in in vitro culture were treated with IGF1, BMP2 or FGF2 (10 ng/ml) for 24 hours (IGF1) or 48 hours (BMP2 and FGF2). Experiments were performed during the exponential growth phase with approximately 1e7 cells per 75 cm. 2. flask. mRNA was reverse transcribed directly and analysed using RT-PCR Taqman assays. Expression levels of key genes involved in cell growth and differentiation (CDH11, TNFRSF11B, RUNX2, POSTN, ALP, WNT5A, LEF1, HSPA5, FOS, p21) were monitored using RT-PCR with gene-specific Taqman probes. . Results. Autocrine expression of BMP2 is stimulated by FGF2 and BMP2 itself. BMP2 and FGF2 act as proliferative factors as indicated by reduced expression of ALP and POSTN, whereas IGF1 exhibits a more subtle picture: the Wingless und Int-1 (Wnt) signalling pathway and the Smad pathway, but not p38 mitogen-activated protein (MAP) kinase signalling, were shown to be activated by IGF1, leading to proliferation and differentiation of the cells. . Conclusions. For future use of autologous bone cells in the management of bony defects, new treatment options take advantage of growth factors and differentiation factors. Thus, our results might help to guide the timely application of these factors for the expansion and subsequent differentiation of osteoblastic cells in culture. Cite this article: Bone Joint Res 2014;3:236–40


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 124 - 129
1 Jan 2001
Lofthouse RA Davis JR Frondoza CG Jinnah RH Hungerford DS Hare JM

Caveolae, specialised regions of the cell membrane which have been detected in a wide range of mammalian cells, have not been described in bone cells. They are plasmalemmal invaginations, 50 to 100 nm in size, characterised by the presence of the structural protein, caveolin, which exists as three subtypes. Caveolin-1 and caveolin-2 are expressed in a wide range of cell types whereas caveolin-3 is thought to be a muscle-specific subtype. There is little information on the precise function of caveolae, but it has been proposed that they play an important role in signal transduction. As the principal bone-producing cell, the osteoblast has been widely studied in an effort to understand the signalling pathways by which it responds to extracellular stimuli. Our aim in this study was to identify caveolae and their structural protein caveolin in normal human osteoblasts, and to determine which subtypes of caveolin were present. Confocal microscopy showed staining which was associated with the plasma membrane. Transmission electron microscopy revealed the presence of membrane invaginations of 50 to 100 nm, consistent with the appearance of caveolae. Finally, we isolated protein from these osteoblasts, and performed Western blotting using anti-caveolin primary antibodies. This revealed the presence of caveolin-1 and -2, while caveolin-3 was absent. The identification of these structures and their associated protein may provide a significant contribution to our further understanding of signal transduction pathways in osteoblasts


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 2 | Pages 284 - 286
1 Mar 1992
Nolan P Nicholas R Mulholland B Mollan R Wilson D

We cultured human osteoblasts from trabecular bone explants and confirmed their phenotype by alkaline phosphatase assay, increased cyclic adenosine monophosphate production in response to prostaglandin E2 and radiographic micro-analysis of nodules of calcification. The osteoblasts were seeded on to demineralised human bone fragments and examined at ten-day intervals over a 50-day period by scanning electron microscopy. During this time the bank bone became progressively repopulated by the cultured osteoblasts. This system may offer a means of graft enhancement in elective orthopaedic and maxillofacial surgery by delivery of cultured autologous human osteoblasts to bone defects


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 457 - 460
1 Apr 2000
Zambonin G Camerino C Greco G Patella V Moretti B Grano M

We have studied in vitro the effect of a hydroxyapatite (HA) tricalcium phosphate material coated with hepatocyte growth factor (HA-HGF) on cell growth, collagen synthesis and secretion of metalloproteinases (MMPs) by human osteoblasts. Cell proliferation was stimulated when osteoblasts were incubated with untreated HA and was further increased after exposure to HA-HGF. The uptake of [. 3. H]-proline was increased after treatment with HA. When osteoblasts were exposed to HA-HGF, collagen synthesis was increased with respect to HA. The secretion of MMPs in control cells was undetectable, but in HA and HA-HGF cells MMP 2 and MMP 9 were clearly synthesised. Our results suggest that HA can promote osteoblast activity and that HGF can further increase its bioactivity


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1054 - 1061
1 Sep 2002
Bhandari M Schemitsch EH

High-pressure lavage produces greater visible damage to bone at a macroscopic and microscopic level when compared with low-pressure lavage and can result in delay in the healing of fractures. Osteoblasts and adipocytes are derived from mesenchymal stem cells. Conditions which lead to bone loss often involve a switch from the osteoblast to adipocyte lineage. We have therefore examined the effect of high- and low-pressure irrigation on the differentiation of adipocytes. Calvaria-derived bone cells were exposed to either low-pressure or high-pressure irrigation with normal saline. After 14 days the cells were fixed and the osteoblasts and adipocytes quantified using Oil Red O to stain cytoplasmic lipid droplets (triglycerides) in the cells. Osteoblasts were quantified using a commercially available alkaline-phosphatase staining assay. A standard quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed. Messenger RNA levels for osteocalcin, a marker of osteoblasts, and PPARγ2, a marker of adipocytes, were measured. High-pressure lavage resulted in an increase in adipogenesis of 50% when compared with low-pressure lavage. Our findings suggest that high-pressure lavage may promote differentiation of mesenchymal stem cells towards the adipoctye lineage. This may have clinical significance in the development of delayed and nonunion after treatment of fractures of long bones


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 2 | Pages 288 - 290
1 Mar 1989
Evans C Galasko C Ward C

Unlike most other tumours, myeloma causes bone destruction without an osteoblastic reaction; we tried to assess whether myeloma secretes a humoral factor that inhibits osteoblasts. Human bone-derived cells were either co-cultured with myeloma cells, or cultured in medium conditioned by myeloma cells. Bone-derived cell growth was measured by cell counts and by uptake of tritiated thymidine (3H-Tdr); growth was inhibited when cultured in medium conditioned by myeloma cells and some inhibition was seen when the bone-derived cells were co-cultured with myeloma cells. The inhibiting effect was dose-dependent and also dependent upon the density of the myeloma cells conditioning the medium. The results of our study suggest that myeloma secretes an osteoblast inhibiting factor of less than 50,000 Dalton molecular weight


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 444 - 449
1 Apr 2004
Evans CE Butcher C

There is increasing evidence that non-steroidal anti-inflammatory drugs (NSAIDs) can adversely affect bone repair. We have, therefore, studied the in vitro effects of NSAIDs, which differentially inhibit cyclooxygenases (COX), the prostaglandin/thromboxane synthesising enzymes, on human osteoblasts. Indomethacin and the new nitric oxide (NO)-donating NSAIDs block the activity of both COX-1 and COX-2. Indomethacin and 5,5-dimethyl-3-(3 fluorophenyl)-4-(4 methylsulphonal) phenyl-2 (5H)-furanone (DFU) reduced osteoblast numbers in a dose-dependant manner and increased collagen synthesis and alkaline phosphatase activity. The reduction in osteoblast numbers was not caused by loss of adhesion and was reversible. Neither NSAID influenced DNA synthesis. There was no difference between the effects of indomethacin and DFU. NO-NSAIDs did not affect cell numbers. These results suggest that care should be taken when administering NSAIDs to patients with existing skeletal problems and that NO-NSAIDs may be safer


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.


Bone & Joint Research
Vol. 1, Issue 1 | Pages 1 - 7
1 Jan 2012
Rosenberg N Rosenberg O

Objectives

The need for bone tissue supplementation exists in a wide range of clinical conditions involving surgical reconstruction in limbs, the spine and skull. The bone supplementation materials currently used include autografts, allografts and inorganic matrix components; but these pose potentially serious side-effects. In particular the availability of the autografts is usually limited and their harvesting causes surgical morbidity. Therefore for the purpose of supplementation of autologous bone graft, we have developed a method for autologous extracorporeal bone generation.

Methods

Human osteoblast-like cells were seeded on porous granules of tricalcium phosphate and incubated in osteogenic media while exposed to mechanical stimulation by vibration in the infrasonic range of frequencies. The generated tissue was examined microscopically following haematoxylin eosin, trichrome and immunohistochemical staining.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims. Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Methods. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p. Results. The expression of PCBP1-AS1 was pre-eminent in OP tissues and decreased throughout the development of human bone marrow-derived mesenchymal stem cells (hBMSCs) into osteoblasts. PCBP1-AS1 knockdown and overexpression respectively promoted and suppressed hBMSC proliferation and osteogenic differentiation capacity. Mechanistically, PCBP1-AS1 sponged miR-126-5p and consequently targeted PAK2. Inhibiting miR-126-5p significantly counteracted the beneficial effects of PCBP1-AS1 or PAK2 knockdown on hBMSCs’ ability to differentiate into osteoblasts. Conclusion. PCBP1-AS1 is responsible for the development of OP and promotes its progression by inducing PAK2 expression via competitively binding to miR-126-5p. PCBP1-AS1 may therefore be a new therapeutic target for OP patients. Cite this article: Bone Joint Res 2023;12(6):375–386


Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims. The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods. Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results. PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with Staphylococcus aureus infection, compared to those with detection of Staphylococcus epidermidis and Cutibacterium spp. Conclusion. This study provides insights into the local bone metabolism in chronic PJI, demonstrating osteosclerosis with high bone turnover. The fact that Staphylococcus aureus was associated with distinctly increased osteoclast indices strongly suggests early surgical treatment to prevent periprosthetic bone alterations. Cite this article: Bone Joint Res 2023;12(10):644–653


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims. Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods. Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results. In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion. IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications. Cite this article: Bone Joint Res 2023;12(11):691–701


Aims. Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results. The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion. APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression. Cite this article: Bone Joint Res 2023;12(8):476–485


Aims. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing. Methods. A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively. Results. miR-136-5p promoted fracture healing and osteoblast proliferation and differentiation. BMSC-derived exosomes exhibited an enriched miR-136-5p level, and were internalized by MC3T3-E1 cells. LRP4 was identified as a downstream target gene of miR-136-5p. Moreover, miR-136-5p or exosomes isolated from BMSCs (BMSC-Exos) containing miR-136-5p activated the Wnt/β-catenin pathway through the inhibition of LRP4 expression. Furthermore, BMSC-derived exosomes carrying miR-136-5p promoted osteoblast proliferation and differentiation, thereby promoting fracture healing. Conclusion. BMSC-derived exosomes carrying miR-136-5p inhibited LRP4 and activated the Wnt/β-catenin pathway, thus facilitating fracture healing. Cite this article: Bone Joint Res 2021;10(12):744–758


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article: Bone Joint Res 2023;12(9):536–545


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article: Bone Joint Res 2024;13(12):725–740


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims. Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis. Methods. Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression. Results. Tensile strain could decrease the expression of circStrn3 in chondrocytes. CircStrn3 expression was significantly decreased in human and mouse OA cartilage tissues and chondrocytes. CircStrn3 could inhibit matrix metabolism of chondrocytes through competitively ‘sponging’ miRNA-9-5p targeting Kruppel-like factor 5 (KLF5), indicating that the decrease in circStrn3 might be a protective factor in mechanical instability-induced OA. The tensile strain stimulated chondrocytes to secrete exosomal miR-9-5p. Exosomes with high miR-9-5p expression from chondrocytes could inhibit osteoblast differentiation by targeting KLF5. Intra-articular injection of exosomal miR-9-5p alleviated the progression of OA induced by destabilized medial meniscus surgery in mice. Conclusion. Taken together, these results demonstrate that reduction of circStrn3 causes an increase in miR-9-5p, which acts as a protective factor in mechanical instability-induced OA, and provides a novel mechanism of communication among joint components and a potential application for the treatment of OA. Cite this article: Bone Joint Res 2023;12(1):33–45


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims. This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. Methods. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process. Results. Mean callus volume was larger in the elastic fixation group (1,755 mm. 3. (standard error of the mean (SEM) 297)) than in the stiff fixation group (258 mm. 3. (SEM 65)). Pathological observation found that the expression levels of osterix (OSX), collagen, type I, alpha 1 (COL1α1), and alkaline phosphatase (ALP) in the callus of the elastic fixation group were higher than those of the stiff fixation group. The protein sequence of the callus revealed 199 DEPs, 124 of which were highly expressed in the elastic fixation group. In the in vitro study, it was observed that a stress of 200 g led to upregulation of thrombospondin 1 (THBS1) and osteoglycin (OGN) expression in bone marrow mesenchymal stem cells (BMSCs). Additionally, these genes were found to be upregulated during the osteogenic differentiation process of the BMSCs. Conclusion. Elastic fixation can promote fracture healing and osteoblast differentiation in callus, and the ability of elastic fixation to promote osteogenic differentiation of BMSCs may be achieved by upregulating genes such as THBS1 and OGN. Cite this article: Bone Joint Res 2024;13(10):559–572


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims. This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI). Methods. A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR). Results. SCVs can be isolated from samples collected from chronic PJIs intraoperatively. Transmission electron microscopy (TEM) and immunofluorescence (IF) showed that there was more S. aureus in bone samples collected from chronic PJIs, but much less in bone samples from acute PJIs, providing a potential mechanism of PJI. Immunofluorescence results showed that SCVs of S. aureus were more likely to invade osteoblasts in vitro. Furthermore, TEM and IF also demonstrated that SCVs of S. aureus were more likely to invade and colonize in vivo. Cluster analysis and principal component analysis (PCA) showed that there were substantial differences in gene expression profiles between chronic and acute PJI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes were enriched to chemokine-related signal pathways. PCR also verified these results. Conclusion. Our study has shown that the S. aureus SCVs have a greater ability to invade and colonize in bone, resulting in S. aureus remaining in bone tissues long-term, thus explaining the pathogenesis of chronic PJI. Cite this article: Bone Joint Res 2022;11(12):843–853


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results. Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion. We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males. Cite this article: Bone Joint Res 2024;13(1):28–39


Bone & Joint Research
Vol. 9, Issue 2 | Pages 49 - 59
1 Feb 2020
Yu K Song L Kang HP Kwon H Back J Lee FY

Aims. To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant Staphylococcus aureus (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone. Methods. Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified. We tested the effects of cefazolin, gentamicin, vancomycin, tetracycline, rifampicin, and ampicillin, as well as agents used in surgical preparation and irrigation. Results. MRSA infiltrated bone-resident cells within 15 to 30 minutes. Penetration was most effectively prevented with early (i.e. 30 minutes) antibiotic administration. The combined administration of rifampicin with other antibiotics potentiated their protective effects against MRSA-induced cytotoxicity and most significantly reduced extracellular bacterial bioburden. Gentamicin-containing compounds were most effective in reducing intracellular MRSA bioburden. Of the surgical preparation agents evaluated, betadine reduced in vitro MRSA growth to the greatest extent. Conclusion. The standard of care for open fractures involves debridement and antibiotics within the first six hours of injury but does not account for the window in which bacteria penetrate cells. Antibiotics must be administered as early as possible after injury or prior to incision to prevent intracellular infestation. Rifampicin can potentiate the capacity of antibiotic regimens to reduce MRSA-induced cytotoxicity. Cite this article:Bone Joint Res. 2020;9(2):49–59


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives. Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods. The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results. Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions. The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1


Bone & Joint Research
Vol. 6, Issue 2 | Pages 73 - 81
1 Feb 2017
Ishihara K Okazaki K Akiyama T Akasaki Y Nakashima Y

Objectives. Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Methods. Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays. Results. After six weeks, the area of mineralisation was significantly higher for the transplanted osteophytes than for the cancellous bone (43803 μm. 2. , . sd. 14660 versus 9421 μm. 2. , . sd. 5032, p = 0.0184, one-way analysis of variance). Compared with cancellous bone, the conditioned medium prepared using osteophytes contained a significantly higher amounts of transforming growth factor (TGF)-β1 (471 pg/ml versus 333 pg/ml, p = 0.0001, Wilcoxon rank sum test), bone morphogenetic protein (BMP)-2 (47.75 pg/ml versus 32 pg/ml, p = 0.0214, Wilcoxon rank sum test) and insulin-like growth factor (IGF)-1 (314.5 pg/ml versus 191 pg/ml, p = 0.0418, Wilcoxon rank sum test). The stronger effects of osteophytes towards osteoblasts in terms of a higher proliferation rate, upregulation of gene expression of differentiation markers such as alpha-1 type-1 collagen and alkaline phosphate, and higher migration, compared with cancellous bone, was confirmed. Conclusion. We provide evidence of favourable features of osteophytes for bone mineralisation through a direct effect on osteoblasts. The acceleration in metabolic activity of the osteophyte provides justification for future studies evaluating the clinical use of osteophytes as autologous bone grafts. Cite this article: K. Ishihara, K. Okazaki, T. Akiyama, Y. Akasaki, Y. Nakashima. Characterisation of osteophytes as an autologous bone graft source: An experimental study in vivo and in vitro. Bone Joint Res 2017;6:73–81. DOI: 10.1302/2046-3758.62.BJR-2016-0199.R1


Bone & Joint Research
Vol. 10, Issue 8 | Pages 526 - 535
1 Aug 2021
Xin W Yuan S Wang B Qian Q Chen Y

Aims. Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. Methods. RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations. Results. Circ_0066523 was upregulated in osteogenic induction process of BMSCs. Silencing circ_0066523 restrained the proliferation and osteogenic differentiation of BMSCs. Mechanistically, circ_0066523 activated phosphatidylinositol-4,5-bisphosphate 3-kinase / AKT serine/threonine kinase 1 (PI3K/AKT) pathway via recruiting lysine demethylase 5B (KDM5B) to epigenetically repress the transcription of phosphatase and tensin homolog (PTEN). Functionally, AKT signalling pathway agonist or PTEN knockdown counteracted the effects of silenced circ_0066523 on BMSC proliferation and differentiation. Conclusion. Circ_0066523 promotes the proliferation and differentiation of BMSCs by epigenetically repressing PTEN and therefore activating AKT pathway. This finding might open new avenues for the identification of therapeutic targets for osteoblast differentiation related diseases such as ONFH. Cite this article: Bone Joint Res 2021;10(8):526–535


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 108 - 114
1 Jul 2019
Ji G Xu R Niu Y Li N Ivashkiv L Bostrom MPG Greenblatt MB Yang X

Aims. It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. Materials and Methods. An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31. hi. EMCN. hi. endothelium. RNA sequencing analysis was performed using sorted CD31. hi. EMCN. hi. endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells. Results. Flow cytometry revealed that anti-VEGFR treatment decreased CD31. hi. EMCN. hi. vascular endothelium in the peri-implant bone versus controls at two weeks post-implantation. This was confirmed by the decrease of CD31 and endomucin (EMCN) double-positive cells detected with immunofluorescence. In addition, treated mice had more OPN-positive cells in both peri-implant bone and tissue on the implant surface at two weeks and four weeks, respectively. More OSX-positive cells were present in peri-implant bone at two weeks. More importantly, anti-VEGFR treatment decreased the maximum load of pull-out testing compared with the control. Conclusion. VEGF pathway controls the coupling of angiogenesis and osteogenesis in orthopaedic implant osseointegration by affecting the formation of CD31. hi. EMCN. hi. endothelium. Cite this article: Bone Joint J 2019;101-B(7 Supple C):108–114


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. Methods. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. Results. MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, . sd. 5%) compared with MSCs from adult (15%, . sd. 3%) and young rats (25%, . sd. 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, . sd. 4%), young (47%, . sd. 17%) or adult (21%, . sd. 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. Conclusions. MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients. Cite this article: A. Sanghani-Kerai, M. Coathup, S. Samazideh, P. Kalia, L. Di Silvio, B. Idowu, G. Blunn. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 2017;6:–365. DOI: 10.1302/2046-3758.66.BJR-2016-0259.R1


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 678 - 682
1 May 2013
Holinka J Pilz M Kubista B Presterl E Windhager R

The aim of this study was to evaluate whether coating titanium discs with selenium in the form of sodium selenite decreased bacterial adhesion of Staphylococcus aureus and Staph. epidermidis and impeded osteoblastic cell growth. In order to evaluate bacterial adhesion, sterile titanium discs were coated with increasing concentrations of selenium and incubated with bacterial solutions of Staph. aureus (ATCC 29213) and Staph. epidermidis (DSM 3269) and stained with Safranin-O. The effect of selenium on osteoblastic cell growth was also observed. The adherence of MG-63 cells on the coated discs was detected by staining with Safranin-O. The proportion of covered area was calculated with imaging software. The tested Staph. aureus strain showed a significantly reduced attachment on titanium discs with 0.5% (p = 0.011) and 0.2% (p = 0.02) selenium coating. Our test strain from Staph. epidermidis showed a highly significant reduction in bacterial adherence on discs coated with 0.5% (p = 0.0099) and 0.2% (p = 0.002) selenium solution. There was no inhibitory effect of the selenium coating on the osteoblastic cell growth. Selenium coating is a promising method to reduce bacterial attachment on prosthetic material. Cite this article: Bone Joint J 2013;95-B:678–82


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 918 - 921
1 Aug 2003
Ellington JK Harris M Webb L Smith B Smith T Tan K Hudson M

Staphylococcus aureus is the bacterial pathogen which is responsible for approximately 80% of all cases of human osteomyelitis. It can invade and remain within osteoblasts. The fate of intracellular Staph. aureus after the death of the osteoblast has not been documented. We exposed human osteoblasts to Staph. aureus. After infection, the osteoblasts were either lysed with Triton X-100 or trypsinised. The bacteria released from both the trypsinised and lysed osteoblasts were cultured and counted. Colonies of the recovered bacteria were then introduced to additional cultures of human osteoblasts. The number of intracellular Staph. aureus recovered from the two techniques was equivalent. Staph. aureus recovered from time zero and 24 hours after infection, followed by lysis/trypsinisation, were capable of invading a second culture of human osteoblasts. Our findings indicate that dead or dying osteoblasts are capable of releasing viable Staph. aureus and that Staph. aureus released from dying or dead osteoblasts is capable of reinfecting human osteoblasts in culture


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1575 - 1580
1 Nov 2013
Salai M Somjen D Gigi R Yakobson O Katzburg S Dolkart O

We analysed the effects of commonly used medications on human osteoblastic cell activity in vitro, specifically proliferation and tissue mineralisation. A list of medications was retrieved from the records of patients aged > 65 years filed in the database of the largest health maintenance organisation in our country (> two million members). Proliferation and mineralisation assays were performed on the following drugs: rosuvastatin (statin), metformin (antidiabetic), metoprolol (β-blocker), citalopram (selective serotonin reuptake inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)). All tested drugs significantly stimulated DNA synthesis to varying degrees, with rosuvastatin 5 µg/ml being the most effective among them (mean 225% (. sd. 20)), compared with metformin 10 µg/ml (185% (. sd.  10)), metoprolol 0.25 µg/ml (190% (. sd. 20)), citalopram 0.05 µg/ml (150% (. sd. 10)) and omeprazole 0.001 µg/ml (145% (. sd. 5)). Metformin and metoprolol (to a small extent) and rosuvastatin (to a much higher extent) inhibited cell mineralisation (85% (. sd. 5)). Our results indicate the need to evaluate the medications prescribed to patients in terms of their potential action on osteoblasts. Appropriate evaluation and prophylactic treatment (when necessary) might lower the incidence and costs associated with potential medication-induced osteoporosis. Cite this article: Bone Joint J 2013;95-B:1575–80


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 680 - 684
1 May 2008
Simon DWN Clarkin CE Das-Gupta V Rawlinson SCF Emery RJ Pitsillides AA

We examined cultured osteoblasts derived from paired samples from the greater tuberosity and acromion from eight patients with large chronic tears of the rotator cuff. We found that osteoblasts from the tuberosity had no apparent response to mechanical stimulation, whereas those derived from the acromion showed an increase in alkaline phosphatase activity and nitric oxide release which is normally a response of bone cells to mechanical strain. By contrast, we found that cells from both regions were able to respond to dexamethasone, a well-established promoter of osteoblastic differentiation, with the expected increase in alkaline phosphatase activity. Our findings indicate that the failure of repair of the rotator cuff may be due, at least in part, to a compromised capacity for mechanoadaptation within the greater tuberosity. It remains to be seen whether this apparent decrease in the sensitivity of bone cells to mechanical stimulation is the specific consequence of the reduced load-bearing history of the greater tuberosity in these patients


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims

The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model.

Methods

In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing. Materials and Methods. Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses. Results. While SEC2 was found to have no effect on rat MSCs proliferation, it promoted the osteoblast differentiation of rat MSCs. In the rat femoral fracture model, the local administration of SEC2 accelerated fracture healing by increasing fracture callus volumes, bone volume over total volume (BV/TV), and biomechanical recovery. The SEC2 treatment group has superior histological appearance compared with the control group. Conclusion. These data suggest that local administration of SEC2 may be a novel therapeutic approach to enhancing bone repair such as fracture healing. Cite this article: T. Wu, J. Zhang, B. Wang, Y. Sun, Y. Liu, G. Li. Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing. Bone Joint Res 2018;7:179–186. DOI: 10.1302/2046-3758.72.BJR-2017-0229.R1