Patient specific instrumentation (PSI) uses advanced
imaging of the knee (CT or MRI) to generate individualised cutting
blocks aimed to make the procedure of total knee arthroplasty (TKA)
more accurate and efficient. However, in this era of healthcare
cost consciousness, the value of new technologies needs to be critically
evaluated. There have been several comparative studies looking at
PSI versus standard instrumentation. Most compare
PSI with conventional instrumentation in terms of alignment in the
coronal plane, operative time and surgical efficiency, cost effectiveness
and short-term outcomes. Several systematic reviews and meta-analyses
have also been published.
Aims. Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. Methods. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15
Aims. It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). Methods. We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15
Aims. The purpose of the present study was to compare patient-specific instrumentation (PSI) and conventional surgical instrumentation (CSI) for total knee arthroplasty (TKA) in terms of early implant migration, alignment, surgical resources, patient outcomes, and costs. . Patients and Methods. The study was a prospective, randomized controlled trial of 50 patients undergoing TKA. There were 25 patients in each of the
Aims. We conducted a randomised controlled trial to assess the accuracy
of positioning and alignment of the components in total knee arthroplasty
(TKA), comparing those undertaken using standard intramedullary
cutting jigs and those with patient-specific instruments (PSI). Patients and Methods. There were 64 TKAs in the standard group and 69 in the
We conducted a meta-analysis, including randomised
controlled trials (RCTs) and cohort studies, to examine the effect
of patient-specific instruments (PSI) on radiological outcomes after
total knee replacement (TKR) including: mechanical axis alignment
and malalignment of the femoral and tibial components in the coronal,
sagittal and axial planes, at a threshold of >
3º from neutral.
Relative risks (RR) for malalignment were determined for all studies
and for RCTs and cohort studies separately. Of 325 studies initially identified, 16 met the eligibility criteria,
including eight RCTs and eight cohort studies. There was no significant
difference in the likelihood of mechanical axis malalignment with
PSI versus conventional TKR across all studies
(RR = 0.84, p = 0.304), in the RCTs (RR = 1.14, p = 0.445) or in
the cohort studies (RR = 0.70, p = 0.289). The results for the alignment
of the tibial component were significantly worse using
Objectives. To assess the accuracy of patient-specific instruments (PSIs) versus standard manual technique and the precision of computer-assisted planning and PSI-guided osteotomies in pelvic tumour resection. Methods. CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student’s t-test and Mann–Whitney U test were used. Results. Compared with the manual technique, PSI-guided osteotomies improved accuracy by a mean 9.6 mm (p < 0.008) in the sacroiliac osteotomies, 6.2 mm (p < 0.008) and 5.8 mm (p < 0.032) in the biplanar supra-acetabular, 3 mm (p < 0.016) in the ischial and 2.2 mm (p < 0.032) and 2.6 mm (p < 0.008) in the parallel iliopubic osteotomies, with a mean linear deviation of 4.9 mm (p < 0.001) for all osteotomies. Of the manual osteotomies, 53% (n = 16) had a linear deviation > 5 mm and 27% (n = 8) were > 10 mm. In the
Improvements in the surgical technique of total
knee replacement (TKR) are continually being sought. There has recently
been interest in three-dimensional (3D) pre-operative planning using
magnetic resonance imaging (MRI) and CT. The 3D images are increasingly
used for the production of patient-specific models, surgical guides
and custom-made implants for TKR. The users of patient-specific instrumentation (PSI) claim that
they allow the optimum balance of technology and conventional surgery
by reducing the complexity of conventional alignment and sizing
tools. In this way the advantages of accuracy and precision claimed
by computer navigation techniques are achieved without the disadvantages
of additional intra-operative inventory, new skills or surgical
time. This review describes the terminology used in this area and debates
the advantages and disadvantages of
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article:
The February 2024 Foot & Ankle Roundup360 looks at: Survival of revision ankle arthroplasty; Tibiotalocalcaneal nail for the management of open ankle fractures in the elderly patient; Accuracy of a patient-specific total ankle arthroplasty instrumentation; Fusion after failed primary ankle arthroplasty: can it work?; Treatment options for osteochondral lesions of the talus; Managing hair tourniquet syndrome of toe: a rare emergency; Ultrasound-guided collagenase therapy for recurrent plantar fibromatosis: a promising line of therapy?.
Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).Aims
Methods
Objectives. Metal-on-metal (MoM) hip resurfacing was introduced into clinical
practice because it was perceived to be a better alternative to
conventional total hip replacement for young and active patients.
However, an increasing number of reports of complications have arisen
focusing on design and orientation of the components, the generation
of metallic wear particles and serum levels of metallic ions. The
procedure introduced a combination of two elements: large-dimension
components and hard abrasive particles of metal wear. The objective
of our study was to investigate the theory that microseparation
of the articular surfaces draws in a high volume of bursal fluid
and its contents into the articulation, and at relocation under
load would generate high pressures of fluid ejection, resulting
in an abrasive water jet. Methods. This theoretical concept using MoM resurfacing components (head
diameter 55 mm) was modelled mathematically and confirmed experimentally
using a material-testing machine that pushed the head into the cup
at a rate of 1000 mm/min until fully engaged. Results. The mathematical model showed the pattern but not the force of
fluid ejection, the highest pressures were expected when the separation
of the components was only a fraction of one millimetre. The experimental
work confirmed the results; with the mean peak ejection pressure
of 43 763 N/m. 2. equivalent to 306 mmHg or 5
Intraoperative pressure sensors allow surgeons to quantify soft-tissue balance during total knee arthroplasty (TKA). The aim of this study was to determine whether using sensors to achieve soft-tissue balance was more effective than manual balancing in improving outcomes in TKA. A multicentre randomized trial compared the outcomes of sensor balancing (SB) with manual balancing (MB) in 250 patients (285 TKAs). The primary outcome measure was the mean difference in the four Knee injury and Osteoarthritis Outcome Score subscales (ΔKOOS4) in the two groups, comparing the preoperative and two-year scores. Secondary outcomes included intraoperative balance data, additional patient-reported outcome measures (PROMs), and functional measures.Aims
Methods
The February 2024 Oncology Roundup360 looks at: Does primary tumour resection improve survival for patients with sarcomas of the pelvis with metastasis at diagnosis?; Proximal femur replacements for an oncologic indication offer a durable endoprosthetic reconstruction option: a 40-year experience; The importance of awaiting biopsy results in solitary pathological proximal femoral fractures: do we need to biopsy solitary pathological fractures?; Effect of radiotherapy on local recurrence, distant metastasis, and overall survival in 1,200 extremity soft-tissue sarcoma patients; What to choose in bone tumour resections? Patient-specific instrumentation versus surgical navigation; Optimal timing of re-excision in synovial sarcoma patients: immediate intervention versus waiting for local recurrence; Survival differences of patients with resected extraskeletal osteosarcoma receiving two different (neo) adjuvant chemotherapy regimens; Solitary versus multiple bone metastases in the appendicular skeleton: should the surgical treatment be different?.
Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
Total hip and knee arthroplasty (THA, TKA) are largely successful procedures; however, both have variable outcomes, resulting in some patients being dissatisfied with the outcome. Surgeons are turning to technologies such as robotic-assisted surgery in an attempt to improve outcomes. Robust studies are needed to find out if these innovations are really benefitting patients. The Robotic Arthroplasty Clinical and Cost Effectiveness Randomised Controlled Trials (RACER) trials are multicentre, patient-blinded randomized controlled trials. The patients have primary osteoarthritis of the hip or knee. The operation is Mako-assisted THA or TKA and the control groups have operations using conventional instruments. The primary clinical outcome is the Forgotten Joint Score at 12 months, and there is a built-in analysis of cost-effectiveness. Secondary outcomes include early pain, the alignment of the components, and medium- to long-term outcomes. This annotation outlines the need to assess these technologies and discusses the design and challenges when conducting such trials, including surgical workflows, isolating the effect of the operation, blinding, and assessing the learning curve. Finally, the future of robotic surgery is discussed, including the need to contemporaneously introduce and evaluate such technologies. Cite this article:
Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach. From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.Aims
Methods
The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress.Aims
Methods
Acetabular retroversion is a recognized cause of hip impingement and can be influenced by pelvic tilt (PT), which changes in different functional positions. Positional changes in PT have not previously been studied in patients with acetabular retroversion. Supine and standing anteroposterior (AP) pelvic radiographs were retrospectively analyzed in 69 patients treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in the angle of PT was measured both by the sacro-femoral-pubic (SFP) angle and the pubic symphysis to sacroiliac (PS-SI) index.Aims
Methods
The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).Aims
Methods
Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases.Aims
Methods
A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type.Aims
Methods
The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA). Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers.Aims
Methods
The goal of the current systematic review was to assess the impact of implant placement accuracy on outcomes following total knee arthroplasty (TKA). A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using the Ovid Medline, Embase, Cochrane Central, and Web of Science databases in order to assess the impact of the patient-reported outcomes measures (PROMs) and implant placement accuracy on outcomes following TKA. Studies assessing the impact of implant alignment, rotation, size, overhang, or condylar offset were included. Study quality was assessed, evidence was graded (one-star: no evidence, two-star: limited evidence, three-star: moderate evidence, four-star: strong evidence), and recommendations were made based on the available evidence.Aims
Methods
Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (Aims
Patients and Methods
The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph.Aims
Methods
This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty. Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced.Aims
Materials and Methods
The Fluid Lavage in Open Fracture Wounds (FLOW) trial was a multicentre,
blinded, randomized controlled trial that used a 2 × 3 factorial
design to evaluate the effect of irrigation solution (soap Participants completed the Short Form-12 (SF-12) and the EuroQol-5
Dimensions (EQ-5D) at baseline (pre-injury recall), at two and six
weeks, and at three, six, nine and 12-months post-fracture. We calculated
the Physical Component Score (PCS) and the Mental Component Score
(MCS) of the SF-12 and the EQ-5D utility score, conducted an analysis
using a multi-level generalized linear model, and compared differences
between the baseline and 12-month scores.Aims
Patients and Methods
The October 2014 Knee Roundup360 looks at: microfracture equivalent to OATS; examination better than MRI in predicting hamstrings re-injury; a second view on return to play with hamstrings injuries; dislocation risks in the Oxford Unicompartmental Knee; what about the tibia?; getting on top of lateral facet pain post TKR; readmission in TKR; patient-specific instrumentation; treating infrapatellar saphenous neuralgia; and arthroscopy in the middle-aged.
Total knee replacement (TKR) smart tibial trials
have load-bearing sensors which will show quantitative compartment
pressure values and femoral-tibial tracking patterns. Without smart
trials, surgeons rely on feel and visual estimation of imbalance
to determine if the knee is optimally balanced. Corrective soft-tissue
releases are performed with minimal feedback as to what and how
much should be released. The smart tibial trials demonstrate graphically
where and how much imbalance is present, so that incremental releases
can be performed. The smart tibial trials now also incorporate accelerometers
which demonstrate the axial alignment. This now allows the surgeon
the option to perform a slight recut of the tibia or femur to provide
soft-tissue balance without performing soft-tissue releases. Using
a smart tibial trial to assist with soft-tissue releases or bone
re-cuts, improved patient outcomes have been demonstrated at one
year in a multicentre study of 135 patients (135 knees). Cite this article:
Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA. This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.
In this study we randomised 140 patients who
were due to undergo primary total knee arthroplasty (TKA) to have the
procedure performed using either patient-specific cutting guides
(PSCG) or conventional instrumentation (CI). The primary outcome measure was the mechanical axis, as measured
at three months on a standing long-leg radiograph by the hip–knee–ankle
(HKA) angle. This was undertaken by an independent observer who
was blinded to the instrumentation. Secondary outcome measures were
component positioning, operating time, Knee Society and Oxford knee
scores, blood loss and length of hospital stay. A total of 126 patients (67 in the CI group and 59 in the PSCG
group) had complete clinical and radiological data. There were 88
females and 52 males with a mean age of 69.3 years (47 to 84) and
a mean BMI of 28.6 kg/m2 (20.2 to 40.8). The mean HKA
angle was 178.9° (172.5 to 183.4) in the CI group and 178.2° (172.4
to 183.4) in the PSCG group (p = 0.34). Outliers were identified
in 22 of 67 knees (32.8%) in the CI group and 19 of 59 knees (32.2%)
in the PSCG group (p = 0.99). There was no significant difference
in the clinical results (p = 0.95 and 0.59, respectively). Operating time,
blood loss and length of hospital stay were not significantly reduced
(p = 0.09, 0.58 and 0.50, respectively) when using PSCG. The use of PSCG in primary TKA did not reduce the proportion
of outliers as measured by post-operative coronal alignment. Cite this article:
Anatomical total knee arthroplasty alignment
In a global environment of rising costs and limited funds, robotic and computer-assisted orthopaedic technologies could provide the means to drive a necessary revolution in arthroplasty productivity. Robots have been used to operate on humans for 20 years, but the adoption of the technology has lagged behind that of the manufacturing industry. The use of robots in surgery should enable cost savings by reducing instrumentation and inventories, and improving accuracy. Despite these benefits, the orthopaedic community has been resistant to change. If the ergonomics and economics are right, robotic technology just might transform the provision of joint replacement.
Modern principles for the treatment of open fractures include stabilisation of the bone and management of the soft tissues. Wound debridement and irrigation is thought to be the mainstay in reducing the incidence of infection. Although numerous studies on animals and humans have focused on the type of irrigation performed, little is known of the factors which influence irrigation. This paper evaluates the evidence, particularly with regard to additives and the mode of delivery of irrigation fluid. Normal saline should be used and although many antiseptics and antibiotics have been employed, no consensus has been reached as to the ideal additive. Despite the advocates of high-pressure methods highlighting the improved dilutional ability of such techniques, the results are inconclusive and these irrigation systems are not without complications. New systems for debridement are currently being investigated, and an ideal method has yet to be determined.
Accurate placement of the acetabular component during total hip
arthroplasty (THA) is an important factor in the success of the
procedure. However, the reported accuracy varies greatly and is
dependent upon whether free hand or navigated techniques are used.
The aim of this study was to assess the accuracy of an instrument
system that incorporates 3D printed, patient-specific guides designed
to optimise the placement of the acetabular component. A total of 100 consecutive patients were prospectively enrolled
and the accuracy of placement of the acetabular component was measured
using post-operative CT scans.Aims
Patients and Methods
This review examines the future of total hip arthroplasty, aiming to avoid past mistakes
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods
The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.
High-pressure injection injuries occur infrequently but are usually work-related and involve the non-dominant hand. The neck is a very rare site for such an injury. We describe the management of a 36-year-old man with a high-pressure grease-gun injection injury to his neck causing a cervical spinal cord injury. He developed severe motor and sensory changes which were relieved by surgical removal of the grease through anterior and posterior approaches.
Lower limb muscle power is thought to influence outcome following
total knee replacement (TKR). Post-operative deficits in muscle
strength are commonly reported, although not explained. We hypothesised
that post-operative recovery of lower limb muscle power would be
influenced by the number of satellite cells in the quadriceps muscle at
time of surgery. Biopsies were obtained from 29 patients undergoing TKR. Power
output was assessed pre-operatively and at six and 26 weeks post-operatively
with a Leg Extensor Power Rig and data were scaled for body weight.
Satellite cell content was assessed in two separate analyses, the
first cohort (n = 18) using immunohistochemistry and the second
(n = 11) by a new quantitative polymerase chain reaction (q-PCR)
protocol for Pax-7 (generic satellite cell marker) and Neural Cell
Adhesion Molecule (NCAM; marker of activated cells).Objectives
Methods
We investigated the safety and efficacy of treating osteoporotic vertebral compression fractures with an intravertebral cleft by balloon kyphoplasty. Our study included 27 patients who were treated in this way. The mean follow-up was 38.2 months (24 to 54). The anterior and middle heights of the vertebral body and the kyphotic angle were measured on standing lateral radiographs before surgery, one day after surgery, and at final follow-up. Leakage of cement was determined by CT scans. A visual analogue scale and the Oswestry disability index were chosen to evaluate pain and functional activity. Statistically significant improvements were found between the pre- and post-operative assessments (p <
0.05) but not between the post-operative and final follow-up assessments (p >
0.05). Asymptomatic leakage of cement into the paravertebral vein occurred in one patient, as did leakage into the intervertebral disc in another patient. We suggest that balloon kyphoplasty is a safe and effective minimally invasive procedure for the treatment of osteoporotic vertebral compression fractures with an intravertebral cleft.