Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 17 - 24
1 Jul 2021
Vigdorchik JM Sharma AK Buckland AJ Elbuluk AM Eftekhary N Mayman DJ Carroll KM Jerabek SA

Aims. Patients with spinal pathology who undergo total hip arthroplasty (THA) have an increased risk of dislocation and revision. The aim of this study was to determine if the use of the Hip-Spine Classification system in these patients would result in a decreased rate of postoperative dislocation in patients with spinal pathology. Methods. This prospective, multicentre study evaluated 3,777 consecutive patients undergoing THA by three surgeons, between January 2014 and December 2019. They were categorized using The Hip-Spine Classification system: group 1 with normal spinal alignment; group 2 with a flatback deformity, group 2A with normal spinal mobility, and group 2B with a stiff spine. Flatback deformity was defined by a pelvic incidence minus lumbar lordosis of > 10°, and spinal stiffness was defined by < 10° change in sacral slope from standing to seated. Each category determined a patient-specific component positioning. Survivorship free of dislocation was recorded and spinopelvic measurements were compared for reliability using intraclass correlation coefficient. Results. A total of 2,081 patients met the inclusion criteria. There were 987 group 1A, 232 group 1B, 715 group 2A, and 147 group 2B patients. A total of 70 patients had a lumbar fusion, most had L4-5 (16; 23%) or L4-S1 (12; 17%) fusions; 51 patients (73%) had one or two levels fused, and 19 (27%) had > three levels fused. Dual mobility (DM) components were used in 166 patients (8%), including all of those in group 2B and with > three level fusions. Survivorship free of dislocation at five years was 99.2% with a 0.8% dislocation rate. The correlation coefficient was 0.83 (95% confidence interval 0.89 to 0.91). Conclusion. This is the largest series in the literature evaluating the relationship between hip-spine pathology and dislocation after THA, and guiding appropriate treatment. The Hip-Spine Classification system allows surgeons to make appropriate evaluations preoperatively, and it guides the use of DM components in patients with spinopelvic pathology in order to reduce the risk of dislocation in these high-risk patients. Cite this article: Bone Joint J 2021;103-B(7 Supple B):17–24


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 792 - 801
1 Aug 2024
Kleeman-Forsthuber L Kurkis G Madurawe C Jones T Plaskos C Pierrepont JW Dennis DA

Aims

Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age.

Methods

A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 352 - 358
1 Mar 2022
Kleeman-Forsthuber L Vigdorchik JM Pierrepont JW Dennis DA

Aims

Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application.

Methods

Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°.


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 1 | Pages 21 - 26
1 Jan 1984
Kirwan E Hutton P Pozo J Ransford A

The clinical presentation and treatment of 18 cases of osteoid osteoma or osteoblastoma of the spine are described, with an average follow-up of 4.2 years (range three months to 11.5 years). The average delay between the onset of symptoms and definitive diagnosis was 19 months. All patients presented with marked spinal stiffness and a painful scoliosis. The lesion was situated in the pedicle in the 15 patients with involvement of the thoracolumbar spine. A surgical approach allowing direct access to the pedicle without entering the spinal canal or jeopardising spinal stability is described. Surgical treatment afforded immediate relief of pain and an early return of full spinal mobility


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 3 | Pages 472 - 481
1 Aug 1965
Newman PH

1. Thirty-four patients with severe lumbo-sacral subluxation have been studied. Twenty-nine of these came for advice between the ages of nine and nineteen, and of these, twenty-five developed symptoms and signs of a characteristic syndrome. 2. The details of the syndrome are described: the essential features are spinal stiffness, a lordotic gait, resistance to straight leg raising, and in some cases evidence of interference with cauda equina or nerve root. 3. The danger of attempted reduction by traction is stressed, as well as the difficulties to be encountered during posterior lumbo-sacral fusion. 4. The reasons for operating are given; the results of spinal fusion were satisfactory. 5. The traditional apprehension concerning the effect of severe subluxation on childbirth has probably been over-stressed. 6. The tendency to slip was almost completely arrested by spinal fusion


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 257 - 264
1 Feb 2022
Tahir M Mehta D Sandhu C Jones M Gardner A Mehta JS

Aims

The aim of this study was to compare the clinical and radiological outcomes of patients with early-onset scoliosis (EOS), who had undergone spinal fusion after distraction-based spinal growth modulation using either traditional growing rods (TGRs) or magnetically controlled growing rods (MCGRs).

Methods

We undertook a retrospective review of skeletally mature patients who had undergone fusion for an EOS, which had been previously treated using either TGRs or MCGRs. Measured outcomes included sequential coronal T1 to S1 height and major curve (Cobb) angle on plain radiographs and any complications requiring unplanned surgery before final fusion.


Bone & Joint 360
Vol. 10, Issue 5 | Pages 15 - 18
1 Oct 2021


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 486 - 491
1 Mar 2021
Di Martino A Bordini B Ancarani C Viceconti M Faldini C

Aims

Total hip arthroplasty (THA) patients undergoing or having a prior lumbar spine fusion (LSF) have an increased risk of mechanical complications. The aim of this registry-based, retrospective comparative cohort study is to assess the longer term survival of THA in patients who have undergone a LSF during a 17-year period (2000 to 2017).

Methods

A registry-based population study was conducted on 679 patients who underwent both THA and LSF surgeries. Patients were identified from the regional arthroplasty data base and cross linked to patients with LSF from the regional hospital discharge database between 2000 and 2017. Demographic data, diagnosis leading to primary THA, primary implant survival, perioperative complications, number and causes of failure, and patients requiring revision arthroplasty were collated and compared. For comparison, data from 67,919 primary THAs performed during the same time time period were also retrieved and analyzed.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 817 - 823
1 Jul 2019
Vigdorchik J Eftekhary N Elbuluk A Abdel MP Buckland AJ Schwarzkopf RS Jerabek SA Mayman DJ

Aims

While previously underappreciated, factors related to the spine contribute substantially to the risk of dislocation following total hip arthroplasty (THA). These factors must be taken into consideration during preoperative planning for revision THA due to recurrent instability. We developed a protocol to assess the functional position of the spine, the significance of these findings, and how to address different pathologies at the time of revision THA.

Patients and Methods

Prospectively collected data on 111 patients undergoing revision THA for recurrent instability from January 2014 to January 2017 at two institutions were included (protocol group) and matched 1:1 to 111 revisions specifically performed for instability not using this protocol (control group). Mean follow-up was 2.8 years. Protocol patients underwent standardized preoperative imaging including supine and standing anteroposterior (AP) pelvis and lateral radiographs. Each case was scored according to the Hip-Spine Classification in Revision THA.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 405 - 414
15 Jul 2020
Abdelaal A Munigangaiah S Trivedi J Davidson N

Aims

Magnetically controlled growing rods (MCGR) have been gaining popularity in the management of early-onset scoliosis (EOS) over the past decade. We present our experience with the first 44 MCGR consecutive cases treated at our institution.

Methods

This is a retrospective review of consecutive cases of MCGR performed in our institution between 2012 and 2018. This cohort consisted of 44 children (25 females and 19 males), with a mean age of 7.9 years (3.7 to 13.6). There were 41 primary cases and three revisions from other rod systems. The majority (38 children) had dual rods. The group represents a mixed aetiology including idiopathic (20), neuromuscular (13), syndromic (9), and congenital (2). The mean follow-up was 4.1 years, with a minimum of two years. Nine children graduated to definitive fusion. We evaluated radiological parameters of deformity correction (Cobb angle), and spinal growth (T1-T12 and T1-S1 heights), as well as complications during the course of treatment.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 808 - 816
1 Jul 2019
Eftekhary N Shimmin A Lazennec JY Buckland A Schwarzkopf R Dorr LD Mayman D Padgett D Vigdorchik J

There remains confusion in the literature with regard to the spinopelvic relationship, and its contribution to ideal acetabular component position. Critical assessment of the literature has been limited by use of conflicting terminology and definitions of new concepts that further confuse the topic. In 2017, the concept of a Hip-Spine Workgroup was created with the first meeting held at the American Academy of Orthopedic Surgeons Annual Meeting in 2018. The goal of this workgroup was to first help standardize terminology across the literature so that as a topic, multiple groups could produce literature that is immediately understandable and applicable. This consensus review from the Hip-Spine Workgroup aims to simplify the spinopelvic relationship, offer hip surgeons a concise summary of available literature, and select common terminology approved by both hip surgeons and spine surgeons for future research.

Cite this article: Bone Joint J 2019;101-B:808–816.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims

Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery.

Methods

A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed.


Bone & Joint 360
Vol. 9, Issue 2 | Pages 11 - 15
1 Apr 2020