A retrospective study was conducted to measure short-term Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear.Aims
Patients and Methods
Polyethylene particulate wear debris continues to be implicated in the aetiology of aseptic loosening following knee arthroplasty. The Oxford unicompartmental knee arthroplasty employs a spherical femoral component and a fully congruous meniscal bearing to increase contact area and theoretically reduce the potential for polyethylene wear. This study measures the In this The results from this
Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.Aims
Methods
The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.Aims
Methods
The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs). A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints.Aims
Methods
Several short- and mid-term studies have shown minimal liner wear of highly cross-linked polyethylene (HXLPE) in total hip arthroplasty (THA), but the safety of using thinner HXLPE liners to maximize femoral head size remains uncertain. The objective of this study was to analyze clinical survival and radiological wear rates of patients with HXLPE liners, a 36 mm femoral head, and a small acetabular component with a minimum of ten years’ follow-up. We retrospectively identified 55 patients who underwent primary THA performed at a single centre, using HXLPE liners with 36 mm cobalt-chrome heads in acetabular components with an outer diameter of 52 mm or smaller. Patient demographic details, implant details, death, and all-cause revisions were recorded. Cox regression and Kaplan-Meier survival was used to determine all-cause and liner-specific revision. Of these 55 patients, 22 had a minimum radiological follow-up of seven years and were assessed radiologically for linear and volumetric wear.Aims
Methods
Objectives. The accuracy and precision of two new methods of model-based
radiostereometric analysis (RSA) were hypothesised to be superior
to a plain radiograph method in the assessment of polyethylene (PE)
wear. Methods. A phantom device was constructed to simulate three-dimensional
(3D) PE wear. Images were obtained consecutively for each simulated
wear position for each modality. Three commercially available packages
were evaluated: model-based RSA using laser-scanned cup models (MB-RSA),
model-based RSA using computer-generated elementary geometrical
shape models (EGS-RSA), and PolyWare. Precision (95% repeatability
limits) and accuracy (Root Mean Square Errors) for two-dimensional
(2D) and 3D
Limited implant survival due to aseptic cup loosening is most commonly responsible for revision total hip arthroplasty (THA). Advances in implant designs and materials have been crucial in addressing those challenges. Vitamin E-infused highly cross-linked polyethylene (VEPE) promises strong wear resistance, high oxidative stability, and superior mechanical strength. Although VEPE monoblock cups have shown good mid-term performance and excellent wear patterns, long-term results remain unclear. This study evaluated migration and wear patterns and clinical and radiological outcomes at a minimum of ten years’ follow-up. This prospective observational study investigated 101 cases of primary THA over a mean duration of 129 months (120 to 149). At last follow-up, 57 cases with complete clinical and radiological outcomes were evaluated. In all cases, the acetabular component comprised an uncemented titanium particle-coated VEPE monoblock cup. Patients were assessed clinically and radiologically using the Harris Hip Score, visual analogue scale (pain and satisfaction), and an anteroposterior radiograph. Cup migration and polyethylene wear were measured using Einzel-Bild-Röntgen-Analyze software. All complications and associated treatments were documented until final follow-up.Aims
Methods
The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.Aims
Methods
Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate.Aims
Methods
Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.Aims
Methods
Previous studies have suggested that metal-on-metal (MoM) Pinnacle (DePuy Synthes, Warsaw, Indiana) hip arthroplasties implanted after 2006 exhibit higher failure rates. This was attributed to the production of implants with reduced diametrical clearances between their bearing surfaces, which, it was speculated, were outside manufacturing tolerances. This study aimed to better understand the performance of Pinnacle Systems manufactured before and after this event. A total of 92 retrieved MoM Pinnacle hips were analyzed, of which 45 were implanted before 2007, and 47 from 2007 onwards. The ‘pre-2007’ group contained 45 implants retrieved from 21 male and 24 female patients, with a median age of 61.3 years (interquartile range (IQR) 57.1 to 65.5); the ‘2007 onwards’ group contained 47 implants retrieved from 19 male and 28 female patients, with a median age of 61.8 years (IQR 58.5 to 67.8). The volume of material lost from their bearing and taper surfaces was measured using coordinate and roundness measuring machines. These outcomes were then compared statistically using linear regression models, adjusting for potentially confounding factors.Objectives
Methods
The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process. A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.Objectives
Methods
We investigated the reliability of the cobalt-chromium (CoCr) synovial joint fluid ratio (JFR) in identifying the presence of a severe aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response and/or suboptimal taper performance (SOTP) following metal-on-metal (MoM) hip arthroplasty. We then examined the possibility that the CoCr JFR may influence the serum partitioning of Co and Cr. For part A, we included all revision surgeries carried out at our unit with the relevant data, including volumetric wear analysis, joint fluid (JF) Co and Cr concentrations, and ALVAL grade (n = 315). Receiver operating characteristic curves were constructed to assess the reliability of the CoCr JFR in identifying severe ALVAL and/or SOTP. For part B, we included only patients with unilateral prostheses who had given matched serum and whole blood samples for Co and Cr analysis (n = 155). Multiple regression was used to examine the influence of JF concentrations on the serum partitioning of Co and Cr in the blood.Objectives
Methods
The high revision rates of the DePuy Articular Surface Replacement (ASR) and the DePuy ASR XL (the total hip arthroplasty (THA) version) have led to questions over the viability of metal-on-metal (MoM) hip joints. Some designs of MoM hip joint do, however, have reasonable mid-term performance when implanted in appropriate patients. Investigations into the reasons for implant failure are important to offer help with the choice of implants and direction for future implant designs. One way to assess the performance of explanted hip prostheses is to measure the wear (in terms of material loss) on the joint surfaces. In this study, a coordinate measuring machine (CMM) was used to measure the wear on five failed cementless Biomet Magnum/ReCap/ Taperloc large head MoM THAs, along with one Biomet ReCap resurfacing joint. Surface roughness measurements were also taken. The reason for revision of these implants was pain and/or adverse reaction to metal debris (ARMD) and/or elevated blood metal ion levels.Objectives
Methods
We sought to determine whether cobalt-chromium alloy (CoCr) femoral
stem tapers (trunnions) wear more than titanium (Ti) alloy stem
tapers (trunnions) when used in a large diameter (LD) metal-on-metal
(MoM) hip arthroplasty system. We performed explant analysis using validated methodology to
determine the volumetric material loss at the taper surfaces of
explanted LD CoCr MoM hip arthroplasties used with either a Ti alloy
(n = 28) or CoCr femoral stem (n = 21). Only 12/14 taper constructs
with a rough male taper surface and a nominal included angle close
to 5.666° were included. Multiple regression modelling was undertaken
using taper angle, taper roughness, bearing diameter (horizontal
lever arm) as independent variables. Material loss was mapped using
a coordinate measuring machine, profilometry and scanning electron
microscopy.Aims
Patients and Methods
Objectives. The determination of the volumetric polyethylene wear on explanted material requires complicated equipment, which is not available in many research institutions. Our aim in this study was to present and validate a method that only requires a set of polyetheretherketone balls and a laboratory balance to determine wear. Methods. The insert to be measured was placed on a balance, and a ball of the appropriate diameter was inserted. The cavity remaining between the ball and insert caused by wear was filled with contrast medium and the weight of the contrast medium was recorded. The volume was calculated from the known density of the liquid. The precision, inter- and intraobserver reliability, were determined by four investigators on four days using nine inserts with specified wear (0.094 ml to 1.626 ml), and the intra-class correlation coefficient was calculated. The feasibility of using this method in routine clinical practice and the time required for measurement were tested on 84 explanted inserts by one investigator. Results. In order to get the mean for all investigators and determinations, the deviation between the measured and specified wear was -0.08 ml . (sd. 0.12; -0.21 to 0.11). The interobserver reliability was 0.989 ml (95% confidence interval (CI) 0.964 to 0.997) and the intraobserver reliability was 0.941 for observer 1 (95% CI 0.846 to 0.985), 0.983 for observer 2 (95% CI 0.956 to 0.995), 0.939 for observer 3 (95% CI 0.855 to 0.984), and 0.934 for observer 4 (95% CI 0.790 to 0.984). The mean time required to examine the samples was two minutes . (sd. 2; 1 to 5). Conclusion. The method presented here was shown to be sufficiently precise for many settings and is a cost-effective and quick method of determining the volumetric wear of explanted acetabular components. However, the
Our aim in this study was to describe a continuing review of
11 total hip arthroplasties using 22.225 mm Alumina ceramic femoral
heads on a Charnley flanged femoral component, articulating against
a silane crosslinked polyethylene. Nine patients (11 THAs) were reviewed at a mean of 27.5 years
(26 to 28) post-operatively. Outcome was assessed using the d’Aubigne
and Postel, and Charnley scores and penetration was recorded on
radiographs. In addition, the oxidation of a 29-year-old shelf-aged
acetabular component was analysed.Aims
Patients and Methods
Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV.Objectives
Materials and Methods
This paper describes the methodology, validation and reliability
of a new computer-assisted method which uses models of the patient’s
bones and the components to measure their migration and polyethylene
wear from radiographs after total hip arthroplasty (THA). Models of the patient’s acetabular and femoral component obtained
from the manufacturer and models of the patient’s pelvis and femur
built from a single computed tomography (CT) scan, are used by a
computer program to measure the migration of the components and
the penetration of the femoral head from anteroposterior and lateral radiographs
taken at follow-up visits. The program simulates the radiographic
setup and matches the position and orientation of the models to
outlines of the pelvis, the acetabular and femoral component, and
femur on radiographs. Changes in position and orientation reflect
the migration of the components and the penetration of the femoral
head. Validation was performed using radiographs of phantoms simulating
known migration and penetration, and the clinical feasibility of
measuring migration was assessed in two patients.Aims
Materials and Methods
Polyethylene wear debris can cause osteolysis
and the failure of total hip arthroplasty. We present the five-year
wear rates of a highly cross-linked polyethylene (X3) bearing surface
when used in conjunction with a 36 mm ceramic femoral head. This was a prospective study of a cohort of 100 THAs in 93 patients.
Pain and activity scores were measured pre- and post-operatively.
Femoral head penetration was measured at two months, one year, two
years and at five years using validated edge-detecting software
(PolyWare Auto). At a mean of 5.08 years (3.93 to 6.01), 85 hips in 78 patients
were available for study. The mean age of these patients was 59.08
years (42 to 73, the mean age of males (n = 34) was 59.15 years,
and females (n = 44) was 59.02 years). All patients had significant
improvement in their functional scores (p <
0.001). The steady
state two-dimensional linear wear rate was 0.109 mm/year. The steady
state volumetric wear rate was 29.61 mm3/year. No significant
correlation was found between rate of wear and age (p = 0.34), acetabular
component size (p = 0.12) or clinical score (p = 0.74). Our study shows low steady state wear rates at five years in
X3 highly cross-linked polyethylene in conjunction with a 36 mm
ceramic femoral head. The linear wear rate was almost identical
to the osteolysis threshold of 0.1 mm/year recommended in the literature. Cite this article:
The objective of this five-year prospective, blinded, randomised
controlled trial (RCT) was to compare femoral head penetration into
a vitamin E diffused highly cross-linked polyethylene (HXLPE) liner
with penetration into a medium cross-linked polyethylene control
liner using radiostereometric analysis. Patients scheduled for total hip arthroplasty (THA) were randomised
to receive either the study E1 (32 patients) or the control ArComXL
polyethylene (35 patients). The median age (range) of the overall
cohort was 66 years (40 to 76).Aims
Patients and Methods
High failure rates of metal-on-metal hip arthroplasty implants have highlighted the need for more careful introduction and monitoring of new implants and for the evaluation of the safety of medical devices. The National Joint Registry and other regulatory services are unable to detect failing implants at an early enough stage. We aimed to identify validated surrogate markers of long-term outcome in patients undergoing primary total hip arthroplasty (THA). We conducted a systematic review of studies evaluating surrogate markers for predicting long-term outcome in primary THA. Long-term outcome was defined as revision rate of an implant at ten years according to National Institute of Health and Care Excellence guidelines. We conducted a search of Medline and Embase (OVID) databases. Separate search strategies were devised for the Cochrane database and Google Scholar. Each search was performed to include articles from the date of their inception to June 8, 2015.Objectives
Methods
We sought to establish whether an oxidised zirconium (OxZr) femoral
component causes less loss of polyethylene volume than a cobalt
alloy (CoCr) femoral component in total knee arthroplasty. A total of 20 retrieved tibial inserts that had articulated with
OxZr components were matched with 20 inserts from CoCr articulations
for patient age, body mass index, length of implantation, and revision
diagnosis. Changes in dimensions of the articular surfaces were compared
with those of pristine inserts using laser scanning. The differences
in volume between the retrieved and pristine surfaces of the two
groups were calculated and compared.Aims
Materials and Methods
Wear debris released from bearing surfaces has been shown to
provoke negative immune responses in the recipient. Excessive wear
has been linked to early failure of prostheses. Analysis using coordinate
measuring machines (CMMs) can provide estimates of total volumetric
material loss of explanted prostheses and can help to understand
device failure. The accuracy of volumetric testing has been debated,
with some investigators stating that only protocols involving hundreds
of thousands of measurement points are sufficient. We looked to
examine this assumption and to apply the findings to the clinical
arena. We examined the effects on the calculated material loss from
a ceramic femoral head when different CMM scanning parameters were
used. Calculated wear volumes were compared with gold standard gravimetric
tests in a blinded study. Objectives
Methods
The purpose of this study was to compare the long-term results
of primary total hip arthroplasty (THA) in young patients using
either a conventional (CPE) or a highly cross-linked (HXLPE) polyethylene
liner in terms of functional outcome, incidence of osteolysis, radiological
wear and rate of revision. We included all patients between the ages of 45 and 65 years
who, between January 2000 and December 2001, had undergone a primary
THA for osteoarthritis at our hospital using a CPE or HXLPE acetabular
liner and a 28 mm cobalt-chrome femoral head. From a total of 160 patients, 158 (177 hips) were available for
review (CPE 89; XLPE 88). The mean age, body mass index (BMI) and
follow-up in each group were: CPE: 56.8 years (46 to 65); 30.7 kg/m2 (19
to 58); 13.2 years (2.1 to 14.7) and HXLPE: 55.6 years (45 to 65);
BMI: 30 kg/m2 (18 to 51); 13.1 years (5.7 to 14.4).Aims
Methods
We report the five-year outcome of a randomised
controlled trial which used radiostereometric analysis (RSA) to assess
the influence of surface oxidised zirconium (OxZr, Oxinium) on polyethylene
wear A total of 120 patients, 85 women and 35 men with a mean age
of 70 years (59 to 80) who were scheduled for primary cemented total
hip arthroplasty were randomly allocated to four study groups. Patients
were blinded to their group assignment and received either a conventional
polyethylene (CPE) or a highly cross-linked (HXL) acetabular component
of identical design. On the femoral side patients received a 28
mm head made of either cobalt-chromium (CoCr) or OxZr. The proximal head penetration (wear) was measured with repeated
RSA examinations over five years. Clinical outcome was measured
using the Harris hip score. There was no difference in polyethylene wear between the two
head materials when used with either of the two types of acetabular
component (p = 0.3 to 0.6). When comparing the two types of polyethylene
there was a significant difference in favour of HXLPE, regardless
of the head material used (p <
0.001). In conclusion, we found no advantage of OxZr over CoCr in terms
of polyethylene wear after five years of follow-up. Our findings
do not support laboratory results which have shown a reduced rate
of wear with OxZr. They do however add to the evidence on the better
resistance to wear of HXLPE over CPE. Cite this article:
The Articular Surface Replacement (ASR) hip resurfacing arthroplasty has a failure rate of 12.0% at five years, compared with 4.3% for the Birmingham Hip Resurfacing (BHR). We analysed 66 ASR and 64 BHR explanted metal-on-metal hip replacements with the aim of understanding their mechanisms of failure. We measured the linear wear rates of the acetabular and femoral components and analysed the clinical cause of failure, pre-revision blood metal ion levels and orientation of the acetabular component. There was no significant difference in metal ion levels (chromium, p = 0.82; cobalt, p = 0.40) or head wear rate (p = 0.14) between the two groups. The ASR had a significantly increased rate of wear of the acetabular component (p = 0.03) and a significantly increased occurrence of edge loading (p <
0.005), which can be attributed to differences in design between the ASR and BHR. The effects of differences in design on the
We conducted a systematic review and meta-analysis of randomised controlled trials comparing cross-linked with conventional polyethylene liners for total hip replacement in order to determine whether these liners reduce rates of wear, radiological evidence of osteolysis and the need for revision. The MEDLINE, EMBASE and COCHRANE databases were searched from their inception to May 2010 for all trials involving the use of cross-linked polyethylene in total hip replacement. Eligibility for inclusion in the review included the random allocation of treatments, the use of cross-linked and conventional polyethylene, and radiological wear as an outcome measure. The pooled mean differences were calculated for bedding-in, linear wear rate, three-dimensional linear wear rate, volumetric wear rate and total linear wear. Pooled risk ratios were calculated for radiological osteolysis and revision hip replacement. A search of the literature identified 194 potential studies, of which 12 met the inclusion criteria. All reported a significant reduction in radiological wear for cross-linked polyethylene. The pooled mean differences for linear rate of wear, three-dimensional linear rate of wear, volumetric wear rate and total linear wear were all significantly reduced for cross-linked polyethylene. The risk ratio for radiological osteolysis was 0.40 (95% confidence interval 0.27 to 0.58; I2 = 0%), favouring cross-linked polyethylene. The follow-up was not long enough to show a difference in the need for revision surgery.
There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised ex vivo methods of measurement. We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared. The series had high wear volumes (mean 1385 mm. 3. ; 730 to 1850) and high wear rates (mean 205 mm. 3. /year; 92 to 363). There were wide variations in the
We have compared four computer-assisted methods to measure penetration of the femoral head into the acetabular component in total hip replacement. These were the Martell Hip Analysis suite 7.14, Rogan HyperOrtho, Rogan View Pro-X and Roman v1.70. The images used for the investigation comprised 24 anteroposterior digital radiographs and 24 conventional acetate radiographs which were scanned to provide digital images. These radiographs were acquired from 24 patients with an uncemented total hip replacement with a follow-up of approximately eight years (mean 8.1; 6.3 to 9.1). Each image was measured twice by two blinded observers. The mean annual rates of penetration of the femoral head measured in the eight-year single image analysis were: Martell, 0.24 (SD 0.19); HyperOrtho, 0.12 (SD 0.08); View Pro-X, 0.12 (SD 0.06); Roman, 0.12 (SD 0.07). In paired analysis of the six-month and eight-year radiographs: Martell, 0.35 (SD 0.22); HyperOrtho, 0.15 (SD 0.13); View Pro-X, 0.11 (SD 0.06); Roman, 0.11 (SD 0.07). The intra- and inter-observer variability for the paired analysis was best for View Pro-X and Roman software, with intraclass correlations of 0.97, 0.87 and 0.96, 0.87, respectively, and worst for HyperOrtho and Martell, with intraclass correlations of 0.46, 0.13 and 0.33, 0.39, respectively. The Roman method proved the most precise and the most easy to use in clinical practice and the software is available free of charge. The Martell method showed the lowest precision, indicating a problem with its edge detection algorithm on digital images.
We measured the orientation of the acetabular and femoral components in 45 patients (33 men, 12 women) with a mean age of 53.4 years (30 to 74) who had undergone revision of metal-on-metal hip resurfacings. Three-dimensional CT was used to measure the inclination and version of the acetabular component, femoral version and the horizontal femoral offset, and the linear wear of the removed acetabular components was measured using a roundness machine. We found that acetabular version and combined version of the acetabular and femoral components were weakly positively correlated with the rate of wear. The acetabular inclination angle was strongly positively correlated with the rate of wear. Femoral version was weakly negatively correlated with the rate of wear. Application of a threshold of >
5 μm/year for the rate of wear in order to separate the revisions into low or high wearing groups showed that more high wearing components were implanted outside Lewinnek’s safe zone, but that this was mainly due to the inclination of the acetabular component, which was the only parameter that significantly differed between the groups. We were unable to show that excess version of the acetabular component alone or combined with femoral version was associated with an increase in the rate of wear based on our assessment of version using CT.
We reviewed the results at nine to 13 years of 125 total hip replacements in 113 patients using the monoblock uncemented Morscher press-fit acetabular component. The mean age at the time of operation was 56.9 years (36 to 74). The mean clinical follow-up was 11 years (9.7 to 13.5) and the mean radiological follow-up was 9.4 years (7.7 to 13.1). Three hips were revised, one immediately for instability, one for excessive wear and one for deep infection. No revisions were required for aseptic loosening. A total of eight hips (7.0%) had osteolytic lesions greater than 1 cm, in four around the acetabular component (3.5%). One required bone grafting behind a well-fixed implant. The mean wear rate was 0.11 mm/year (0.06 to 0.78) and was significantly higher in components with a steeper abduction angle. Kaplan-Meier survival curves at 13 years showed survival of 96.8% (95% confidence interval 90.2 to 99.0) for revision for any cause and of 95.7% (95% confidence interval 88.6 to 98.4) for any acetabular re-operation.
In this prospective study we studied the effect
of the inclination angle of the acetabular component on polyethylene wear
and component migration in cemented acetabular sockets using radiostereometric
analysis. A total of 120 patients received either a cemented Reflection
All-Poly ultra-high-molecular-weight polyethylene or a cemented
Reflection All-Poly highly cross-linked polyethylene acetabular
component, combined with either cobalt–chrome or Oxinium femoral
heads. Femoral head penetration and migration of the acetabular
component were assessed with repeated radiostereometric analysis
for two years. The inclination angle was measured on a standard
post-operative anteroposterior pelvic radiograph. Linear regression
analysis was used to determine the relationship between the inclination
angle and femoral head penetration and migration of the acetabular component. We found no relationship between the inclination angle and penetration
of the femoral head at two years’ follow-up (p = 0.9). Similarly,
our data failed to reveal any statistically significant correlation
between inclination angle and migration of these cemented acetabular
components (p = 0.07 to p = 0.9).
This multicentre study analysed 12 alumina ceramic-on-ceramic
components retrieved from squeaking total hip replacements after
a mean of 23 months
We studied 33 third generation, alumina ceramic-on-ceramic bearings retrieved from cementless total hip replacements after more than six months in situ. Wear volume was measured with a Roundtest machine, and acetabular orientation from the anteroposterior pelvic radiograph. The overall median early wear rate was 0.1 mm3/yr for the femoral heads, and 0.04 mm3/yr for the acetabular liners. We then excluded hips where the components had migrated. In this stable subgroup of 22 bearings, those with an acetabular anteversion of <
15° (seven femoral heads) had a median femoral head wear rate of 1.2 mm3/yr, compared with 0 mm3/yr for those with an anteversion of ≥15° (15 femoral heads, p <
0.001). Even under edge loading, wear volumes with ceramic-on-ceramic bearings are small in comparison to other bearing materials. Low acetabular anteversion is associated with greater wear.
The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term.
Increasing follow-up identifies the outcome in younger patients who have undergone total hip replacement (THR) and reveals the true potential for survival of the prosthesis. We identified 28 patients (39 THRs) who had undergone cemented Charnley low friction arthroplasty between 1969 and 2001. Their mean age at operation was 17.9 years (12 to 19) and the maximum follow-up was 34 years. Two patients (4 THRs) were lost to follow-up, 13 (16 THRs) were revised at a mean period of 19.1 years (8 to 34) and 13 (19 THRs) continue to attend regular follow-up at a mean of 12.6 years (2.3 to 29). In this surviving group one acetabular component was radiologically loose and all femoral components were secure. In all the patients the diameter of the femoral head was 22.225 mm with Charnley femoral components used in 29 hips and C-stem femoral components in ten. In young patients who require THR the acetabular bone stock is generally a limiting factor for the size of the component. Excellent long-term results can be obtained with a cemented polyethylene acetabular component and a femoral head of small diameter.
The presence of pseudotumours, which are soft-tissue masses relating to the hip, after metal-on-metal hip resurfacing arthroplasty has been associated with elevated levels of metal ions in serum, suggesting that pseudotumours occur when there is increased wear. We aimed to quantify the wear in vivo of implants revised for pseudotumours (eight) and of a control group of implants (22) revised for other reasons of failure. We found that the implant group with pseudotumours had a significantly higher rate of median linear wear of the femoral component at 8.1 μm/year (2.75 to 25.4) than the 1.79 μm/year (0.82 to 4.15; p = 0.002) of the non-pseudotumour group. For the acetabular component a significantly higher rate of median linear wear of 7.36 μm/year (1.61 to 24.9) was observed in the pseudotumour group compared with 1.28 μm/year (0.81 to 3.33, p = 0.001) in the other group. Wear of the acetabular component in the pseudotumour group always involved the edge of the implant, indicating that edge-loading had occurred. Our findings are the first direct evidence that pseudotumour is associated with increased wear at the metal-on-metal articulation. Furthermore, edge-loading with the loss of fluid-film lubrication may be an important mechanism of generation of wear in patients with a pseudotumour.
Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.
We performed a three-year radiostereometric analysis (RSA) study of the Elite Plus femoral component on 25 patients undergoing primary total hip replacement. Additional assessments and measurements from standard radiographs were also made. Subsidence of the stem occurred at the cement-stem interface. At 36 months the subsidence of the stem centroid was a mean of 0.30 mm (0.02 to 1.28), and was continuing at a slow rate. At the same time point, internal rotation and posterior migration of the femoral head had ceased. One stem migrated excessively and additional assessments suggested that this was probably due to high patient demand. The failure rate of 4% in our study is consistent with data from arthroplasty registers but contrasts with poor results from another RSA study, and from some clinical studies. We believe that the surgical technique, particularly the use of high-viscosity cement, may have been an important factor contributing to our results.
The recent resurgence in the use of metal-on-metal bearings has led to fresh concerns over metal wear and elevated systemic levels of metal ions. In order to establish if bearing diameter influences the release of metal ions, we compared the whole blood levels of cobalt and chromium (at one year) and the urinary cobalt and chromium output (at one to three and four to six years) following either a 50 mm or 54 mm Birmingham hip resurfacing or a 28 mm Metasul total hip replacement. The whole blood concentrations and daily output of cobalt and chromium in these time periods for both bearings were in the same range and without significant difference.
We investigated the wear characteristics and clinical performance of four different total hip joint articulations in 114 patients. Wear and migration was measured by roentgenstereophotogrammetric analysis at five years or at the last follow-up. The mean annual wear was 0.11 mm for a stainless steel/Enduron articulation, 0.34 mm for stainless steel/Hylamer cup, 0.17 mm for zirconium oxide ceramic/Enduron and 0.40 mm for zirconium oxide ceramic/Hylamer. The difference between the groups was significant (p <
0.008) except for stainless steel/Hylamer At present, 12 patients have undergone a revision procedure, four at five years and eight thereafter. No patient who received a stainless steel/Enduron articulation at their primary replacement required revision. Conflicting results have been reported about the performance of the zirconium oxide ceramic femoral head, but our findings suggest that it should not be used with a polymethylmethacrylate acetabular component. Hylamer has already been withdrawn from the market.