Advertisement for orthosearch.org.uk
Results 1 - 50 of 270
Results per page:
Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 237 - 249
1 Apr 2021
Chen X Chen W Aung ZM Han W Zhang Y Chai G

Aims. LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling. Methods. The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic media for osteogenesis. Specific staining, a bone resorption assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were subsequently used to evaluate the effect of LY3023414. Moreover, small interfering RNA (siRNA) was applied to knockdown Akt1 or Akt2 for further validation. Lastly, western blot was used to examine the exact mechanism of action. Results. LY3023414 attenuated PI3K/protein kinase B (Akt)/GSK3-dependent activation of β-catenin and nuclear factor-activated T cell 1 (NFATc1) during osteogenesis and osteoclastogenesis, respectively. LY3023414 mainly inhibited osteoclast formation instead of mature osteoclast function. Moreover, it suppressed osteogenesis both in the early stage of differentiation and late stage of calcification. Similarly, gene knockdown of Akt isoforms by siRNA downregulated osteogenic and osteoclastogenic processes, indicating that Akt1 and Akt2 acted synergistically. Conclusion. LY3023414 can suppress osteogenesis and osteoclastogenesis through inhibition of the PI3K/Akt/GSK3 signalling pathway, which highlights the potential benefits and side effects of LY3023414 for future clinical applications. Cite this article: Bone Joint Res 2021;10(4):237–249


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes. Cite this article: Bone Joint Res 2023;12(12):722–733


Bone & Joint Research
Vol. 8, Issue 2 | Pages 73 - 80
1 Feb 2019
Zhang J Hao X Yin M Xu T Guo F

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases. Cite this article: J. Zhang, X. Hao, M. Yin, T. Xu, F. Guo. Long non-coding RNA in osteogenesis: A new world to be explored. Bone Joint Res 2019;8:73–80. DOI: 10.1302/2046-3758.82.BJR-2018-0074.R1


Bone & Joint Research
Vol. 9, Issue 1 | Pages 1 - 14
1 Jan 2020
Stewart S Darwood A Masouros S Higgins C Ramasamy A

Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 670 - 672
1 May 2006
Darmanis S Bircher M

We describe two patients aged 16 and 25 years with osteogenesis imperfecta who sustained displaced fractures of the acetabulum following minor trauma. The femoral heads were deformed by impact against the acetabular margin and both cases underwent surgical reconstruction. The quality of the bone and soft tissues made the operations challenging. There were potential complications specific to osteogenesis imperfecta, including bleeding, the creation of secondary fracture lines and shredding of the soft-tissue. The cases provide useful guidelines for addressing these difficulties


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results. Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion. We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males. Cite this article: Bone Joint Res 2024;13(1):28–39


Bone & Joint Research
Vol. 8, Issue 10 | Pages 481 - 488
1 Oct 2019
Nathan K Lu LY Lin T Pajarinen J Jämsen E Huang J Romero-Lopez M Maruyama M Kohno Y Yao Z Goodman SB

Objectives. Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures. Methods. A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion. Results. We found that 96 hours of M1 phenotype in male cocultures allowed for maximum matrix mineralization versus 72 hours in female cocultures. ALP activity and osteocalcin secretion were also enhanced with the addition of IL-4 later in male versus female groups. The sex of the cells had a statistically significant effect on the optimal IL-4 addition time to maximize osteogenesis. Conclusion. These results suggest that: 1) a 72- to 96-hour proinflammatory environment is critical for optimal matrix mineralization; and 2) there are immunological differences in this coculture environment due to sex. Optimizing immunomodulation during fracture healing may enhance and expedite the bone regeneration response. These findings provide insight into precise immunomodulation for enhanced bone healing that is sex-specific. Cite this article: K. Nathan, L. Y. Lu, T. Lin, J. Pajarinen, E. Jämsen, J-F. Huang, M. Romero-Lopez, M. Maruyama, Y. Kohno, Z. Yao, S. B. Goodman. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res 2019;8:481–488. DOI: 10.1302/2046-3758.810.BJR-2018-0231.R2


Bone & Joint Research
Vol. 14, Issue 1 | Pages 5 - 15
1 Jan 2025
Tanveer M Klein K von Rechenberg B Darwiche S Dailey HL

Aims. The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. Methods. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap. Results. Gap-closing strains averaged 51% (mean) at the far cortex. Peak compressive volumetric strain averaged 32% and only a small tissue volume (average 0.3 cm. 3. ) within the gap experienced compressive strains > 10%. Distortional strains were much higher and more widespread, peaking at a mean of 115%, with a mean of 3.3 cm. 3. of tissue in and around the osteotomy experiencing distortional strains > 10%. Callus mineralization initiated outside the high-strain gap and was significantly lower within the fracture gap compared to around it at nine weeks. Conclusion. Ovine osteotomies can heal with high gap strains (> 10%) dominated by shear conditions. High gap strain appears to be a transient local limiter of osteogenesis, not a global inhibitor of secondary fracture repair. Cite this article: Bone Joint Res 2025;14(1):5–15


Bone & Joint Research
Vol. 11, Issue 5 | Pages 327 - 341
23 May 2022
Alagboso FI Mannala GK Walter N Docheva D Brochhausen C Alt V Rupp M

Aims. Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy. Methods. The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP. Results. The S. aureus-infected osteoblasts showed a significant number of intracellular bacteria colonies and an unusual higher metabolic activity (p < 0.005) compared to uninfected osteoblasts. Treatment with 8 µg/ml RMP significantly eradicated intracellular bacteria and the metabolic activity was comparable to uninfected groups. The RMP-treated infected osteoblasts revealed a significantly reduced amount of mineralized extracellular matrix (ECM) at seven days osteogenesis relative to uninfected untreated osteoblasts (p = 0.007). Prolonged osteogenesis and RMP treatment at 21 days significantly improved the ECM mineralization level. Ultrastructural images of the mineralized RMP-treated infected osteoblasts revealed viable osteoblasts and densely distributed calcium crystal deposits within the extracellular organic matrix. The expression levels of prominent bone formation genes were comparable to the RMP-treated uninfected osteoblasts. Conclusion. Intracellular S. aureus infection impaired osteoblast metabolism and function. However, treatment with low dosage of RMP eradicated the intracellular S. aureus, enabling extracellular organic matrix formation and mineralization of osteoblasts at later stage. Cite this article: Bone Joint Res 2022;11(5):327–341


The Journal of Bone & Joint Surgery British Volume
Vol. 67-B, Issue 4 | Pages 602 - 604
1 Aug 1985
Versfeld G Beighton P Katz K Solomon A

Study of 16 patients with Type III osteogenesis imperfecta showed marked elongation of the pedicles of the vertebrae in all cases, a deformity which was not seen in other types of the disease. Posterior rib angulation was also noted in Type III disease. These features have proved useful in suggesting the diagnosis of osteogenesis imperfecta even before long bones have fractured and in categorizing patients with osteogenesis imperfecta into the correct type for prognostic purposes


Bone & Joint Research
Vol. 8, Issue 1 | Pages 19 - 31
1 Jan 2019
Li M Zhang C Yang Y

Objectives. Many in vitro studies have investigated the mechanism by which mechanical signals are transduced into biological signals that regulate bone homeostasis via periodontal ligament fibroblasts during orthodontic treatment, but the results have not been systematically reviewed. This review aims to do this, considering the parameters of various in vitro mechanical loading approaches and their effects on osteogenic and osteoclastogenic properties of periodontal ligament fibroblasts. Methods. Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017. Results. A total of 26 studies from the 555 articles obtained via the database search were ultimately included, and four main types of biomechanical approach were identified. Compressive force is characterized by static and continuous application, whereas tensile force is mainly cyclic. Only nine studies investigated the mechanisms by which periodontal ligament fibroblasts transduce mechanical stimulus. The studies provided evidence from in vitro mechanical loading regimens that periodontal ligament fibroblasts play a unique and dominant role in the regulation of bone remodelling during orthodontic tooth movement. Conclusion. Evidence from the reviewed studies described the characteristics of periodontal ligament fibroblasts exposed to mechanical force. This is expected to benefit subsequent research into periodontal ligament fibroblasts and to provide indirectly evidence-based insights regarding orthodontic treatment. Further studies should be performed to explore the effects of static tension on cytomechanical properties, better techniques for static compressive force loading, and deeper analysis of underlying regulatory systems. Cite this article: M. Li, C. Zhang, Y. Yang. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: A systematic review of in vitro studies. Bone Joint Res 2019;8:19–31. DOI: 10.1302/2046-3758.81.BJR-2018-0060.R1


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article: Bone Joint Res 2024;13(9):462–473


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 2 | Pages 233 - 238
1 Mar 1984
Pozo J Crockard H Ransford A

Basilar impression is a well-recognised though rare complication of osteogenesis imperfecta. Three patients, all members of the same family, with advanced basilar impression complicating osteogenesis imperfecta tarda, are described. The clinical features in these cases illustrate the natural history of this condition: from asymptomatic ventricular dilatation, through the foramen magnum compression syndrome, to death from brain-stem compression. The radiological criteria on which the diagnosis is based, are defined. Review of the literature reveals only seven previously documented cases, all in patients with mild forms of osteogenesis imperfecta. The unusually low incidence of basilar impression in osteogenesis imperfecta and its apparent restriction to patients with mild forms of the disease is discussed. The examination of close relatives of patients with basilar impression and osteogenesis imperfecta is emphasised in order to anticipate the onset of severe neurological complications


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 812 - 814
1 Jun 2009
Ramaswamy R Kosashvili Y Cameron H

Osteogenesis imperfecta is a rare inherited disorder of connective tissue which may present with recurrent fractures which are prone to nonunion and malunion resulting in deformity. Some patients develop osteoarthritis of the hip. Formation of hyperplastic callus after recurrent fractures may deform the shape of the femur and preclude the use of standard implants at joint replacement. Replacement can thus be technically demanding. We present a case of bilateral hip replacement in a patient with osteogenesis imperfecta and hyperplastic callus which was treated by the use of long femoral allografts and cemented femoral stems


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing. Materials and Methods. Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses. Results. While SEC2 was found to have no effect on rat MSCs proliferation, it promoted the osteoblast differentiation of rat MSCs. In the rat femoral fracture model, the local administration of SEC2 accelerated fracture healing by increasing fracture callus volumes, bone volume over total volume (BV/TV), and biomechanical recovery. The SEC2 treatment group has superior histological appearance compared with the control group. Conclusion. These data suggest that local administration of SEC2 may be a novel therapeutic approach to enhancing bone repair such as fracture healing. Cite this article: T. Wu, J. Zhang, B. Wang, Y. Sun, Y. Liu, G. Li. Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing. Bone Joint Res 2018;7:179–186. DOI: 10.1302/2046-3758.72.BJR-2017-0229.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 634 - 638
1 May 2011
Cho T Kim J Lee JW Lee K Park MS Yoo WJ Chung CY Choi IH

We investigated the fracture-free survival of long bones stabilised by a telescopic intramedullary rod (TIMR) in patients with osteogenesis imperfecta with respect to the remodelling status of fracture or osteotomy sites and TIMR regions, in order to identify risk factors for fracture. A total of 44 femora and 28 tibiae in 25 patients with a mean age of 5.0 years (1.9 to 10.5) at presentation were studied. There were six patients with Sillence type I, five with type III, 13 with type IV and one with type V osteogenesis imperfecta. All received bisphosphonate treatment at the same stage during the mean follow-up of 7.3 years (0.5 to 18.1). The fracture-free survival was estimated at 6.2 years (95% confidence interval 5.1 to 7.3) by Kaplan-Meier analysis. More than half the fracture or osteotomy sites remained in a less-remodelled state at the latest follow-up or time of fracture. Of the 33 fractures, 29 (87.9%) occurred in long bones containing a less-remodelled site, and these fractures were located at this site. The relative fracture risk at the rod tip was significantly greater than in any other TIMR region (p < 0.001), and this was higher in bone segments having a less-remodelled site. This study shows a persistent fracture risk in TIMR-stabilised long bones, especially at less-remodelled fracture or osteotomy sites and at the rod tip


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims. The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies. Methods. A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase. Results. The early fxH proteome was characterized by immunomodulatory and osteogenic proteins, and proteins involved in the coagulation cascade. Treatment-specific proteome alterations were observed. The fxH proteome of the ETC group showed increased expression of pro-inflammatory proteins related to, among others, activation of the complement system, neutrophil functioning, and macrophage activation, while showing decreased expression of proteins related to osteogenesis and tissue remodelling. Conversely, the fxH proteome of the DCO group contained various upregulated or exclusively detected proteins related to tissue regeneration and remodelling, and proteins related to anti-inflammatory and osteogenic processes. Conclusion. The early fxH proteome of the ETC group was characterized by the expression of immunomodulatory, mainly pro-inflammatory, proteins, whereas the early fxH proteome of the DCO group was more regenerative and osteogenic in nature. These findings match clinical observations, in which enhanced surgical trauma after multiple trauma causes dysbalanced inflammation, potentially leading to reduced tissue regeneration, and gained insights into regulatory mechanisms of fracture healing after severe trauma. Cite this article: Bone Joint Res 2024;13(5):214–225


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 3 | Pages 422 - 427
1 May 1989
Stockley I Bell M Sharrard W

We report the results of using 83 expanding intramedullary rods in 24 children with osteogenesis imperfecta after a mean follow-up of five years three months. In all, 62% of the rods have expanded after one primary operation. Thirty-four additional operations were necessary; 11 for the correction of rotation or angulation deformities and 23 for revision of the rod or T-piece. All these revisions were successful. Complications were more frequent in children who required very small rods. Problems with Bailey-Dubow rods led to the development of the Sheffield rod system; 17 bones treated with these rods are included in the series. Before surgery only eight of the 24 children were able to walk but at review 20 children were walking, 15 without walking aids. Elongating intramedullary rods should be available to all children with osteogenesis imperfecta as they improve walking capability, reduce the number of fractures, prevent deformity and allow integration of the child into society


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 1 | Pages 143 - 147
1 Jan 1995
Zionts L Nash J Rude R Ross T Stott N

We used dual-energy X-ray absorptiometry (DEXA) to compare the bone mineral density (BMD) of nine children aged from 2 years 7 months to 13 years 5 months who had mild osteogenesis imperfecta with an age- and sex-matched control group. The patients had only mild clinical symptoms but DEXA detected highly significant differences in BMD between them and the controls. The mean BMD in the children with osteogenesis imperfecta was 76.7% of normal in the lumbar spine (p < 0.001) and 71.2% of normal in the femoral neck (p < 0.001). DEXA is an objective, reproducible and sensitive method of measurement of BMD in children. It may help to establish the diagnosis, to assess prognosis and possibly to monitor the response to different types of treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 64-B, Issue 1 | Pages 36 - 43
1 Feb 1982
Yong-Hing K MacEwen G

A survey was conducted to document the results of bracing and spinal fusion for scoliosis associated with osteogenesis imperfecta. Observations were made of 121 patients who underwent treatment by bracing or spinal fusion and who had been treated by 51 orthopaedic surgeons in 14 countries. The average curve before bracing measured 43 degrees. The braces were ineffective in stopping progression even in small curves. We were unable to determine whether braces slowed the rate of progression of curvature. The average age at fusion was 15 years 7 months, the average curve before operation measured 74 degrees, and the average correction was 36 per cent. The high incidence of complications was related to the size of the curve before spinal fusion, the use of Harrington instrumentation, and the presence of associated kyphosis. In the absence of pseudarthrosis or kyphosis, late bending of the fused spine did not seem to occur


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 2 | Pages 184 - 185
1 Mar 1983
Ziv I Rang M Hoffman H

Paraplegia occurred in an adolescent girl with osteogenesis imperfecta after chiropractic manipulation. The child had been able to walk freely out of doors. Complete motor paralysis with sensory sparing resulted due to anterior compression of the cord by spondyloptotic cervical vertebrae. Reconstructed computerised tomography was very helpful in demonstrating the abnormality. Anterior and then posterior decompression relieved the tethered spinal cord and were supplemented with bone grafting. Early diagnosis and surgical treatment will prevent similar neurological accidents


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 5 | Pages 652 - 655
1 Nov 1984
Middleton R

Three cases of severe osteogenesis imperfecta are reported. Each was treated by closed intramedullary rodding, combined with osteoclasis to correct deformity. Operation was performed within a few months of birth. Both tibiae and both femora were stabilised in one operation, using x-ray image intensification to monitor placement of the rods. The technique used to insert the rods is described. The procedure appeared to be entirely satisfactory in reducing the incidence of fractures and it allowed the affected infants to be handled much more easily


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 54 - 55
1 Jan 1998
Karagkevrekis CB Ainscow DAP

We describe two patients with osteogenesis imperfecta who developed transient osteoporosis in both hips sequentially


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 3 | Pages 475 - 479
1 May 1990
Sanguinetti C Greco F De Palma L Specchia N Falciglia F

We obtained specimens of growth-plate cartilage from four patients with osteogenesis imperfecta. Light microscopy showed structural changes in the tissue and morphological changes in chondrocytes and matrix, particularly in the hypertrophic zone. There were changes in the process of calcification in the primary mineralisation zone of the cartilage. We also found histochemical changes in the matrix glycosaminoglycans (GAGs) in the zones where physiological mineralisation was disturbed and where the trabeculae were interrupted and poorly mineralised. In addition to the known molecular defects in collagen, changes in GAGs and non-collagenous proteins are important factors in the pathogenesis of the disease


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 3 | Pages 429 - 432
1 May 1987
Middleton R Frost R

This paper describes the design, development and early surgical experience with a stereotactic device to allow closed retrieval and interchange of intramedullary rods in children with osteogenesis imperfecta. This relatively atraumatic procedure may allow more frequent rod interchange than with other techniques, lessening the likelihood of deformity and fracture in the unsupported skeleton when the bone has outgrown the intramedullary rod. The procedure was developed by design studies in vitro followed by intramedullary rodding of tibiae of New Zealand white rabbits. It has been used in children 12 times, in six tibiae and six femora: 11 rods have been successfully retrieved, with rod interchange in eight of these cases


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 259 - 265
1 Mar 2004
Saldanha KAN Saleh M Bell MJ Fernandes JA

We performed limb lengthening and correction of deformity of nine long bones of the lower limb in six children (mean age, 14.7 years) with osteogenesis imperfecta (OI). All had femoral lengthening and three also had ipsilateral tibial lengthening. Angular deformities were corrected simultaneously. Five limb segments were treated using a monolateral external fixator and four with the Ilizarov frame. In three children, lengthening was done over previously inserted femoral intramedullary rods. The mean lengthening achieved was 6.26 cm (mean healing index, 33.25 days/cm). Significant complications included one deep infection, one fracture of the femur and one anterior angulation deformity of the tibia. The abnormal bone of OI tolerated the external fixators throughout the period of lengthening without any episodes of migration of wires or pins through the soft bone. The regenerate bone formed within the time which is normally expected in limb-lengthening procedures performed for other conditions. We conclude that despite the abnormal bone characteristics, distraction osteogenesis to correct limb-length discrepancy and angular deformity can be performed safely in children with OI


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 2 | Pages 189 - 196
1 May 1977
Nade S Burwell R

This paper examines the fate of decalcified allografts (homografts) of iliac cancellous bone impregnated with autologous red marrow and implanted intermuscularly into the anterior abdominal wall of rabbits. In contrast to the findings of Urist and other workers that cortical bone decalcified with hydrochloric acid (HCl) and then freeze-dried is inductive to new bone formation in various heterotopic sites, evidence is presented that iliac bone decalcified by HCl and grafted alone to a muscular site is itself very weakly inductive to bone formation. However, when combined with autologous bone marrow the HCl-decalcified bone provides a better substrate for bone formation by marrow cells than does either undecalcified iliac bone, or iliac bone decalcified with ethylene-diamine-tetra-acetic acid. The freezing or freeze-drying of decalcified bone does not affect new bone formation when implanted alone or with autologous marrow. The differences between the cortical and cancellous bone as inductive substrates for osteogenesis are discussed and the interrelationship of bone and marrow in combined bone grafts are re-evaluated


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 999 - 1004
1 Nov 1998
Wilkinson JM Scott BW Clarke AM Bell MJ

The Sheffield Expanding Intramedullary Rod System was developed after experiencing problems with existing rod systems in the management of osteogenesis imperfecta. Between 1986 and 1996 we treated 74 bones in the lower limb in 28 children at a median follow-up of 5.25 years. We have reviewed 24 children with a total of 60 rods. Before surgery, all children had had multiple fractures of the lower limb. At review eight patients had experienced no further fractures, but three had suffered five or more subsequently. Before initial stabilisation, 15 children had never walked, and only three (13%) used walking as their main means of mobility. After surgery, half of those who showed motor arrest were able to walk (p = 0.016). The number of patients able to walk, with or without aids, increased to 17 (p = 0.0001). We have experienced no evidence of epiphyseal damage after the procedure, and complication rates requiring rod exchange have been low (7%)


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 2 | Pages 227 - 232
1 Mar 1984
Lang-Stevenson A Sharrard W

The results and complications of the use of Bailey-Dubow extensible rods in 28 lower limb bones of 10 patients suffering from osteogenesis imperfecta are reviewed. Twenty-eight operations were for the primary insertion of the rods into the femur or tibia; a further nine operations were needed for the treatment of complications. These complications included 10 instances of proximal migration of the distal end of the rod, one of incorrect placement in the proximal femur, four instances of loosening of a T-piece and three of infection about a rod, two of these being in one child. Most complications arose from technical faults at insertion. The details of technique which have evolved from experience are described. Only one fracture has occurred in a bone after correct placement of a rod. Of the 10 patients, seven of whom had never walked before, seven were able to walk and two others had achieved walking, but were under treatment for complications at the time of review. There was no evidence of damage to growth epiphyses. The greater technical complexity of insertion of Bailey-Dubow rods is well justified by the results obtained when they are correctly applied


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims

Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP.

Methods

Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims

Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation.

Methods

The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 11 - 16
1 Jan 2000
Li YH Chow W Leong JCY

We have reviewed the results of the Sofield-Millar operation on 58 long bones in ten patients. If more than three osteotomies were undertaken the time to union of the bone was significantly prolonged (p< 0.001) with significant thinning of the bone (p< 0.02).

We have used a modified technique in order to minimise surgical trauma and devascularisation of the bone. The rod is introduced under the control of an image-intensifier. Small surgical exposures are made only at the sites of corrective wedge osteotomies. The number of osteotomies is kept to the minimum.


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 88 - 96
1 Jan 2023
Vogt B Rupp C Gosheger G Eveslage M Laufer A Toporowski G Roedl R Frommer A

Aims

Distraction osteogenesis with intramedullary lengthening devices has undergone rapid development in the past decade with implant enhancement. In this first single-centre matched-pair analysis we focus on the comparison of treatment with the PRECICE and STRYDE intramedullary lengthening devices and aim to clarify any clinical and radiological differences.

Methods

A single-centre 2:1 matched-pair retrospective analysis of 42 patients treated with the STRYDE and 82 patients treated with the PRECICE nail between May 2013 and November 2020 was conducted. Clinical and lengthening parameters were compared while focusing radiological assessment on osseous alterations related to the nail’s telescopic junction and locking bolts at four different stages.


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 1 | Pages 155 - 156
1 Jan 1995
Ogilvie-Harris D Khazim R


Bone & Joint Research
Vol. 13, Issue 12 | Pages 779 - 789
16 Dec 2024
Zou H Hu F Wu X Xu B Shang G An D Qin D Zhang X Yang A

Aims. The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis. Methods. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments. Results. LINC01089 expression was reinforced in serum samples of OP patients, but it gradually diminished while hMSCs underwent osteogenic differentiation. LINC01089 knockdown facilitated hMSC osteogenic differentiation. This was substantiated by: the increase in ALP activity; ALP, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN) messenger RNA (mRNA) levels; and level of ARS staining. Meanwhile, LINC01089 upregulation resulted in the opposite effects. LINC01089 targeted miR-1287-5p, and the LINC01089 knockdown-induced hMSC osteogenic differentiation was repressed by miR-1287-5p depletion. HSPA4 is a downstream function molecule of the LINC01089/miR-1287-5p pathway; miR-1287-5p negatively modulated HSPA4 levels and attenuated its functional effects. Conclusion. LINC01089 negatively regulated hMSC osteogenic differentiation, at least in part, via governing miR-1287-5p/HSPA4 signalling. These findings provide new insights into hMSC osteogenesis and bone metabolism. Cite this article: Bone Joint Res 2024;13(12):779–789


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims. The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results. DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion. DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 108 - 114
1 Jul 2019
Ji G Xu R Niu Y Li N Ivashkiv L Bostrom MPG Greenblatt MB Yang X

Aims. It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. Materials and Methods. An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31. hi. EMCN. hi. endothelium. RNA sequencing analysis was performed using sorted CD31. hi. EMCN. hi. endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells. Results. Flow cytometry revealed that anti-VEGFR treatment decreased CD31. hi. EMCN. hi. vascular endothelium in the peri-implant bone versus controls at two weeks post-implantation. This was confirmed by the decrease of CD31 and endomucin (EMCN) double-positive cells detected with immunofluorescence. In addition, treated mice had more OPN-positive cells in both peri-implant bone and tissue on the implant surface at two weeks and four weeks, respectively. More OSX-positive cells were present in peri-implant bone at two weeks. More importantly, anti-VEGFR treatment decreased the maximum load of pull-out testing compared with the control. Conclusion. VEGF pathway controls the coupling of angiogenesis and osteogenesis in orthopaedic implant osseointegration by affecting the formation of CD31. hi. EMCN. hi. endothelium. Cite this article: Bone Joint J 2019;101-B(7 Supple C):108–114


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims. Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. Methods. In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation. Results. TGF-β and bFGF were shown to significantly enhance cell proliferation. VEGF and IGF-1 supported ALP activity. Light microscopy showed initial extracellular matrix mineralization after VEGF/IGF-1 supply. Conclusion. A combination of more than two growth factors did not support the cellular metabolism level and ALP activity even though the growth factor itself had a positive effect. This is probably caused by interplay of various messengers shared by more growth factor signalling cascades. Cite this article: Bone Joint Res 2020;9(7):412–420


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives. Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis. Methods. Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days. Results. Using micro-CT, we found that A-79175, a 5-LO inhibitor, increased bone formation in an apparent dose-related manner. Conclusions. These results indicate that 5-LO inhibition could be used therapeutically to enhance treatments that require the direct formation of bone


Bone & Joint Research
Vol. 7, Issue 11 | Pages 601 - 608
1 Nov 2018
Hsu W Hsu W Hung J Shen W Hsu RW

Objectives. Osteoporosis is a metabolic disease resulting in progressive loss of bone mass as measured by bone mineral density (BMD). Physical exercise has a positive effect on increasing or maintaining BMD in postmenopausal women. The contribution of exercise to the regulation of osteogenesis in osteoblasts remains unclear. We therefore investigated the effect of exercise on osteoblasts in ovariectomized mice. Methods. We compared the activity of differentially expressed genes of osteoblasts in ovariectomized mice that undertook exercise (OVX+T) with those that did not (OVX), using microarray and bioinformatics. Results. Many inflammatory pathways were significantly downregulated in the osteoblasts after exercise. Meanwhile, IBSP and SLc13A5 gene expressions were upregulated in the OVX+T group. Furthermore, in in vitro assay, IBSP and SLc13A5 mRNAs were also upregulated during the osteogenic differentiation of MC3T3-E1 and 7F2 cells. Conclusion. These findings suggest that exercise may not only reduce the inflammatory environment in ovariectomized mice, indirectly suppressing the overactivated osteoclasts, but may also directly activate osteogenesis-related genes in osteoblasts. Exercise may thus prevent the bone loss caused by oestrogen deficiency through mediating the imbalance between the bone resorptive activity of osteoclasts and the bone formation activity of osteoblasts. Cite this article: W-B. Hsu, W-H. Hsu, J-S. Hung, W-J. Shen, R. W-W. Hsu. Transcriptome analysis of osteoblasts in an ovariectomized mouse model in response to physical exercise. Bone Joint Res 2018;7:601–608. DOI: 10.1302/2046-3758.711.BJR-2018-0075.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 1 | Pages 35 - 39
1 Jan 1983
Paterson C McAllion S Miller R

Most patients with dominantly inherited osteogenesis imperfecta have blue sclerae and relatively mild symptoms. However, in a small group of families the patients have normal sclerae and this disorder has been classified as Type 4 osteogenesis imperfecta. This paper reports the clinical and radiographical features of 48 patients from 16 families with Type 4 osteogenesis imperfecta and compares the findings with those of the classical disorder with blue sclerae (Type 1 osteogenesis imperfecta). The two types are similar in usually causing a mild disease but with a wide range of severity, and in both types the rate of fracture declines in adolescence. There are, however, some significant differences apart from the colour of the sclerae. In Type 4 the first fracture more commonly occurs at birth, dentinogenesis imperfecta is more frequent than in Type 1 and bruising and nose-bleeds are less common. As in Type 1, the radiographic appearances of the bones may be normal. It is important that Type 4 osteogenesis imperfecta should be recognised because of the need for competent genetic counselling, because the management may be different from that appropriate for Type 1 and because it may be mistaken for idiopathic juvenile osteoporosis or child abuse


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives. Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Methods. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs). Results. The supernatant contained several GFs/CKs, with especially high levels of basic fibroblast growth factor, and CD34+ cells as the stem/progenitor cell fraction. With regard to biological potential, we confirmed that cell proliferation, osteoinduction, and angiogenesis in hMSCs and HUVECs were enhanced by the supernatant. Conclusions. The current study demonstrates the potential of a new point-of-care strategy for regenerative medicine using skeletal muscle supernatant. This attractive approach and readily-available material could be a promising option for tissue repair/regeneration in the clinical setting. Cite this article: M. Yoshikawa, T. Nakasa, M. Ishikawa, N. Adachi, M. Ochi. Evaluation of autologous skeletal muscle-derived factors for regenerative medicine applications. Bone Joint Res 2017;6:277–283. DOI: 10.1302/2046-3758.65.BJR-2016-0187.R1


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives. Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs. Methods. Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS). Results. HPL and HPL+Hplasma had a significantly greater growth-promoting effect than FBS, while Hplasma exhibited a similar growth-promoting effect to that of FBS. ADMSCs cultured in HPL and/or Hplasma generated more colony-forming unit fibroblasts (CFU-F) than those cultured in FBS. After long-term culture, ADMSCs cultured in HPL and/or Hplasma showed reduced cellular senescence, retained typical cell phenotypes, and retained differentiation capacities into osteogenic and adipogenic lineages. Conclusion. HPL and Hplasma prepared from blood products after their recommended transfusion date can be used as an alternative and effective source for large-scale ex vivo expansion of ADMSCs. Cite this article: J. Phetfong, T. Tawonsawatruk, K. Seenprachawong, A. Srisarin, C. Isarankura-Na-Ayudhya, A. Supokawej. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Bone Joint Res 2017;6:414–422. DOI: 10.1302/2046-3758.67.BJR-2016-0342.R1


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1048 - 1055
1 Aug 2020
Cox I Al Mouazzen L Bleibleh S Moldovan R Bintcliffe F Bache CE Thomas S

Aims. The Fassier Duval (FD) rod is a third-generation telescopic implant for children with osteogenesis imperfecta (OI). Threaded fixation enables proximal insertion without opening the knee or ankle joint. We have reviewed our combined two-centre experience with this implant. Methods. In total, 34 children with a mean age of five years (1 to 14) with severe OI have undergone rodding of 72 lower limb long bones (27 tibial, 45 femoral) for recurrent fractures with progressive deformity despite optimized bone health and bisphosphonate therapy. Data were collected prospectively, with 1.5 to 11 years follow-up. Results. A total of 24 patients (33%) required exchange of implants (14 femora and ten tibiae) including 11 rods bending with refracture. Four (5%) required reoperation with implant retention. Loss of proximal fixation in the femur and distal fixation in the tibia were common. Four patients developed coxa vara requiring surgical correction. In total, 13 patients experienced further fractures without rod bending; eight required implant revision. There was one deep infection. The five-year survival rate, with rod revision as the endpoint, was 63% (95% confidence interval (CI) 44% to 77%) for femoral rods, with a mean age at implantation of 4.8 years (1.3 to 14.8), and 64% (95% CI 36% to 82%) for tibial rods, with a mean age at implantation of 5.2 years (2.0 to 13.8). Conclusion. FD rods are easier to implant but do not improve on the revision rates reported for second generation T-piece rods. Proximal femoral fixation is problematic in younger children with a partially ossified greater trochanter. Distal tibial fixation typically fails after two years. Future generation implants should address proximal femoral and distal tibial fixation to avoid the majority of complications in this series. Cite this article: Bone Joint J 2020;102-B(8):1048–1055


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9


Bone & Joint 360
Vol. 3, Issue 2 | Pages 17 - 19
1 Apr 2014

The April 2014 Spine Roundup. 360 . looks at: medical treatment for ankylosing spondylitis; unilateral TLIF effective; peg fractures akin to neck of femur fractures; sleep apnoea and spinal surgery; scoliosis in osteogenesis imperfect; paediatric atlanto-occipital dislocation; back pain and obesity: chicken or egg?; BMP associated with lumbar plexus deficit; and just how common is back pain?