Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 22 - 23
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS


Bone & Joint 360
Vol. 4, Issue 5 | Pages 2 - 7
1 Oct 2015
Clark GW Wood DJ

The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 254 - 260
1 Mar 2023
Bukowski BR Sandhu KP Bernatz JT Pickhardt PJ Binkley N Anderson PA Illgen R

Aims

Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral BMD with CTXA would improve identification of osteopenia and osteoporosis compared with available preoperative dual-energy X-ray absorptiometry (DXA) analysis, and determine if improved recognition of low BMD would affect the use of cemented stem fixation.

Methods

Retrospective chart review of a single-surgeon database identified 78 patients with CTXA performed prior to robotic-assisted THA (raTHA) (Group 1). Group 1 was age- and sex-matched to 78 raTHAs that had a preoperative hip CT but did not have CTXA analysis (Group 2). Clinical demographics, femoral fixation method, CTXA, and DXA data were recorded. Demographic data were similar for both groups.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 715 - 720
23 Aug 2024
Shen TS Cheng R Chiu Y McLawhorn AS Figgie MP Westrich GH

Aims

Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative technology used during THA is limited. The aims of this study were to: 1) examine whether the use of enabling technologies during THA results in a smaller proportion of wasted implants compared to navigation-guided and conventional manual THA; 2) determine the proportion of wasted implants by implant type; and 3) examine the effects of surgeon experience on rates of implant waste by technology used.

Methods

We identified 104,420 implants either implanted or wasted during 18,329 primary THAs performed on 16,724 patients between January 2018 and June 2022 at our institution. THAs were separated by technology used: robotic-assisted (n = 4,171), imageless navigation (n = 6,887), and manual (n = 7,721). The primary outcome of interest was the rate of implant waste during primary THA.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 806 - 808
27 Sep 2024
Altorfer FCS Lebl DR


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims

To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation.

Methods

Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 898 - 906
1 Sep 2024
Kayani B Wazir MUK Mancino F Plastow R Haddad FS

Aims

The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system.

Methods

This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1123 - 1129
20 Dec 2024
Manara JR Nixon M Tippett B Pretty W Collopy D Clark GW

Aims

Unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) have both been shown to be effective treatments for osteoarthritis (OA) of the knee. Many studies have compared the outcomes of the two treatments, but less so with the use of robotics, or individualized TKA alignment techniques. Functional alignment (FA) is a novel technique for performing a TKA and shares many principles with UKA. Our aim was to compare outcomes from a case-matched series of robotic-assisted UKAs and robotic-assisted TKAs performed using FA.

Methods

From a prospectively collected database between April 2015 and December 2019, patients who underwent a robotic-assisted medial UKA (RA-UKA) were case-matched with patients who had undergone a FA robotic-assisted TKA (RA-TKA) during the same time period. Patients were matched for preoperative BMI, sex, age, and Forgotten Joint Score (FJS). A total of 101 matched pairs were eligible for final review. Postoperatively the groups were then compared for differences in patient-reported outcome measures (PROMs), range of motion (ROM), ability to ascend and descend stairs, and ability to kneel.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 13 - 18
5 Jan 2023
Walgrave S Oussedik S

Abstract

Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan.

Cite this article: Bone Jt Open 2023;4(1):13–18.


Bone & Joint Open
Vol. 3, Issue 7 | Pages 589 - 595
1 Jul 2022
Joo PY Chen AF Richards J Law TY Taylor K Marchand K Clark G Collopy D Marchand RC Roche M Mont MA Malkani AL

Aims

The aim of this study was to report patient and clinical outcomes following robotic-assisted total knee arthroplasty (RA-TKA) at multiple institutions with a minimum two-year follow-up.

Methods

This was a multicentre registry study from October 2016 to June 2021 that included 861 primary RA-TKA patients who completed at least one pre- and postoperative patient-reported outcome measure (PROM) questionnaire, including Forgotten Joint Score (FJS), Knee Injury and Osteoarthritis Outcomes Score for Joint Replacement (KOOS JR), and pain out of 100 points. The mean age was 67 years (35 to 86), 452 were male (53%), mean BMI was 31.5 kg/m2 (19 to 58), and 553 (64%) cemented and 308 (36%) cementless implants.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA.

Methods

A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims

The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery.

Methods

An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 568 - 572
1 May 2020
McDonnell JM Ahern DP Ó Doinn T Gibbons D Rodrigues KN Birch N Butler JS

Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal.

There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced.

Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described.

The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery.

Cite this article: Bone Joint J 2020;102-B(5):568–572.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 407 - 413
1 Apr 2020
Vermue H Lambrechts J Tampere T Arnout N Auvinet E Victor J

The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported.

Cite this article: Bone Joint J 2020;102-B(4):407–413.


Bone & Joint 360
Vol. 13, Issue 1 | Pages 29 - 31
1 Feb 2024

The February 2024 Spine Roundup. 360. looks at: Surgeon assessment of bone – any good?; Robotics reduces radiation exposure in some spinal surgery; Interbody fusion cage versus anterior lumbar interbody fusion with posterior instrumentation; Is robotic-assisted pedicle screw placement an answer to the learning curve?; Acute non-traumatic spinal subarachnoid haematomas: a report of five cases and a systematic review of the literature; Is L4-L5 lateral interbody fusion safe and effective?


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 319 - 328
1 Mar 2020
St Mart J de Steiger RN Cuthbert A Donnelly W

Aim

There has been a significant reduction in unicompartmental knee arthroplasty (UKA) procedures recorded in Australia. This follows several national joint registry studies documenting high UKA revision rates when compared to total knee arthroplasty (TKA). With the recent introduction of robotically assisted UKA procedures, it is hoped that outcomes improve. This study examines the cumulative revision rate of UKA procedures implanted with a newly introduced robotic system and compares the results to one of the best performing non-robotically assisted UKA prostheses, as well as all other non-robotically assisted UKA procedures.

Methods

Data from the Australian Orthopaedic Association National Joint Arthroplasty Registry (AOANJRR) for all UKA procedures performed for osteoarthritis (OA) between 2015 and 2018 were analyzed. Procedures using the Restoris MCK UKA prosthesis implanted using the Mako Robotic-Arm Assisted System were compared to non-robotically assisted Zimmer Unicompartmental High Flex Knee System (ZUK) UKA, a commonly used UKA with previously reported good outcomes and to all other non-robotically assisted UKA procedures using Cox proportional hazard ratios (HRs) and Kaplan-Meier estimates of survivorship.


Bone & Joint Research
Vol. 8, Issue 6 | Pages 228 - 231
1 Jun 2019
Kayani B Haddad FS


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 24 - 33
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS

Aims

The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) versus robotic-arm assisted UKA.

Patients and Methods

This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers.


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 11 - 18
1 Jan 2019
Kayani B Konan S Thakrar RR Huq SS Haddad FS

Objectives

The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, component inclination, component version, and leg-length correction.

Materials and Methods

This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (sd 5.2) vs 67.5 years (sd 5.8) (p = 0.25); body mass index (27.4 kg/m2 (sd 2.1) vs 26.9 kg/m2 (sd 2.2); p = 0.39); and laterality of surgery (right = 28, left = 22 vs right = 12, left = 13; p = 0.78). All operative procedures were undertaken by a single surgeon using the posterior approach. Two independent blinded observers recorded all radiological outcomes of interest using plain radiographs.