Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of
Aims. The aim of this study was to prepare a scoping review to investigate the use of biologic therapies in the treatment of musculoskeletal injuries in professional and Olympic athletes. Methods. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews and Arksey and O’Malley frameworks were followed. A three-step search strategy identified relevant published primary and secondary studies, as well as grey literature. The identified studies were screened with criteria for inclusion comprising clinical studies evaluating the use of biologic therapies in professional and Olympic athletes, systematic reviews, consensus statements, and conference proceedings. Data were extracted using a standardized tool to form a descriptive analysis and a thematic summary. Results. A total of 202 studies were initially identified, and 35 met criteria for the scoping review; 33 (94.3%) were published within the last eight years, and 18 (51.4%) originated from the USA. Platelet rich plasma was the most studied biologic therapy, being evaluated in 33 (94.3%) studies. Ulnar collateral ligament and hamstring injuries were the conditions most studied (nine (25.7%) studies and seven (20.0%) studies, respectively). Athletes most frequently participated in baseball, soccer, and American football. Only two (5.7%) studies were level 1 evidence, with interpretation and comparison between studies limited by the variations in the injury profile, biologic preparations, and rehabilitation protocols. Conclusion. There is diverse use of biologic therapies in the management of musculoskeletal injuries in professional and Olympic athletes. There is currently insufficient high-level evidence to support the widespread use of biologic therapies in athletes. Further
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article:
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the
Orthopaedic outcome measures are used to evaluate the effect of operative interventions. They are used for audit and
Polymethylmethacrylate remains one of the most enduring materials in orthopaedic surgery. It has a central role in the success of total joint replacement and is also used in newer techniques such as percutaneous vertebroplasty and kyphoplasty. This article describes the current uses and limitations of polymethylmethacrylate in orthopaedic surgery. It focuses on its mechanical and chemical properties and links these to its clinical performance. The behaviour of antibiotic-loaded bone cement are discussed, together with areas of
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future
The anatomical studies, basic to our understanding of lumbar spine innervation through the sinu-vertebral nerves, are reviewed.
Although the importance of sound statistical principles in the design and analysis of data has gained prominence in recent years, biostatistics, the application of statistics to the analysis of biological and medical data, is still a subject which is poorly understood and often mishandled. This review introduces, in the context of orthopaedic
Thromboprophylaxis remains a controversial subject. A vast amount of epidemiological and trial data about venous thromboembolism has been published over the past 40 years. These data have been distilled and synthesised into guidelines designed to help the practitioner translate this extensive
Hip implant retrieval analysis is the most important
source of insight into the performance of new materials and designs
of hip arthroplasties. Even the most rigorous
Venous thromboembolism (VTE) remains an immediate
threat to patients following total hip and knee replacement. While
there is a strong consensus that steps should be taken to minimise
the risk to patients by utilising some forms of prophylaxis for
the vast majority of patients, the methods utilised have been extremely
variable. Clinical practice guidelines (CPGs) have been published
by various professional organisations for over 25 years to provide recommendations
to standardise VTE prophylaxis. Historically, these recommendations
have varied widely depending in underlying assumptions, goals, and
methodology of the various groups. This effort has previously been
exemplified by the American College of Chest Physicians (ACCP) and
the American Academy of Orthopaedic Surgeons (AAOS). The former
group of medical specialists targeted minimising venographically
proven deep vein thrombosis (DVT) (the vast majority of which are
asymptomatic) as their primary goal prior to 2012. The latter group of
surgeons targeted minimising symptomatic VTE. As a result prior
to 2012, the recommendations of the two groups were widely divergent.
In the past year, both groups have reassessed the current literature
with the principal goals of minimising symptomatic VTE events and
bleeding complications. As a result, for the first time the CPGs
of these two major subspecialty organisations are in close agreement.
Despite advances in contemporary hip and knee
arthroplasty, blood loss continues to be an issue. Though blood transfusion
has long been used to treat post-operative anemia, the associated
risks are well established. The objective of this article is to
present two practical and effective approaches to minimising blood
loss and transfusion rates in hip and knee arthroplasty: the use
of antifibrinolytic medications such as tranexamic acid and the
adoption of more conservative transfusion indications.
This paper describes the presence of tenodesis effects in normal physiology and explores the uses of operative tenodesis in surgery of the upper limb.
This review discusses the pathogenesis and surgical treatment of tears of the rotator cuff.
Many radiographic techniques have been described for measuring patellar height. They can be divided into two groups: those that relate the position of the patella to the femur (direct) and those that relate it to the tibia (indirect). This article looks at the methods that have been described, the logic behind their conception and the critical analyses that have been performed to test them.
Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate fracture healing must not be ignored.
This review discusses the causes, outcome and prevention of whiplash injury, which costs the economy of the United Kingdom approximately £3.64 billion per annum. Most cases occur as the result of rear-end vehicle collisions at speeds of less than 14 mph. Patients present with neck pain and stiffness, occipital headache, thoracolumbar back pain and upper-limb pain and paraesthesia. Over 66% make a full recovery and 2% are permanently disabled. The outcome can be predicted in 70% after three months.
This article considers the establishment, purpose and conduct of knee arthroplasty registers using the Swedish register as an example. The methods of collection of appropriate data, the cost, and the ways in which this information may be used are considered.
The operative treatment of displaced fractures of the tibial plateau is challenging. Recent developments in the techniques of internal fixation, including the development of locked plating and minimal invasive techniques have changed the treatment of these fractures. We review current surgical approaches and techniques, improved devices for internal fixation and the clinical outcome after utilisation of new methods for locked plating.
The dismal outcome of tuberculosis of the spine in the pre-antibiotic era has improved significantly because of the use of potent antitubercular drugs, modern diagnostic aids and advances in surgical management. MRI allows the diagnosis of a tuberculous lesion, with a sensitivity of 100% and specificity of 88%, well before deformity develops. Neurological deficit and deformity are the worst complications of spinal tuberculosis. Patients treated conservatively show an increase in deformity of about 15°. In children, a kyphosis continues to increase with growth even after the lesion has healed. Tuberculosis of the spine is a medical disease which is not primarily treated surgically, but operation is required to prevent and treat the complications. Panvertebral lesions, therapeutically refractory disease, severe kyphosis, a developing neurological deficit, lack of improvement or deterioration are indications for surgery. Patients who present with a kyphosis of 60° or more, or one which is likely to progress, require anterior decompression, posterior shortening, posterior instrumented stabilisation and anterior and posterior bone grafting in the active stage of the disease. Late-onset paraplegia is best prevented rather than treated. The awareness and suspicion of an atypical presentation of spinal tuberculosis should be high in order to obtain a good outcome. Therapeutically refractory cases of tuberculosis of the spine are increasing in association with the presence of HIV and multidrug-resistant tuberculosis.
A review of the current literature shows that there is a lack of consensus regarding the treatment of spondylolysis and spondylolisthesis in children and adolescents. Most of the views and recommendations provided in various reports are weakly supported by evidence. There is a limited amount of information about the natural history of the condition, making it difficult to compare the effectiveness of various conservative and operative treatments. This systematic review summarises the current knowledge on spondylolysis and spondylolisthesis and attempts to present a rational approach to the evaluation and management of this condition in children and adolescents.
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the release, dissemination, uptake, biological activity, and potential toxicity of metal wear debris released from alloys currently used in modern orthopaedics. The introduction of risk assessment for the evaluation of metal alloys and their use in arthroplasty patients is discussed and this should include potential harmful effects on immunity, reproduction, the kidney, developmental toxicity, the nervous system and carcinogenesis.
Technological advances and shorter rescue times have allowed early and effective resuscitation after trauma and brought attention to the host response to injury. Trauma patients are at risk of progressive organ dysfunction from what appears to be an uncontrolled immune response. The availability of improved techniques of molecular diagnosis has allowed investigation of the role of genetic variations in the inflammatory response to post-traumatic complications and particularly to sepsis. This review examines the current evidence for the genetic predisposition to adverse outcome after trauma. While there is evidence supporting the involvement of different polymorphic variants of genes in determining the post-traumatic course and the development of complications, larger-scale studies are needed to improve the understanding of how genetic variability influences the responses to post-traumatic complications and pharmacotherapy.
The mammalian growth plate is a complex structure which is essential for the elongation of long bones. However, an understanding of how the growth plate functions at the cellular level is lacking. This review, summarises the factors involved in growth-plate regulation, its failure and the consequence of injury. We also describe some of the cellular mechanisms which underpin the increase in volume of the growth-plate chondrocyte which is the major determinant of the rate and extent of bone lengthening. We show how living in situ chondrocytes can be imaged using 2-photon laser scanning microscopy to provide a quantitative analysis of their volume. This approach should give better understanding of the cellular control of bone growth in both healthy and failed growth plates.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
The management of bone loss in revision replacement of the knee remains a challenge despite an array of options available to the surgeon. Bone loss may occur as a result of the original disease, the design of the prosthesis, the mechanism of failure or technical error at initial surgery. The aim of revision surgery is to relieve pain and improve function while addressing the mechanism of failure in order to reconstruct a stable platform with transfer of load to the host bone. Methods of reconstruction include the use of cement, modular metal augmentation of prostheses, custom-made, tumour-type or hinged implants and bone grafting. The published results of the surgical techniques are summarised and a guide for the management of bone defects in revision surgery of the knee is presented.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
Complex regional pain syndrome is characterised by an exaggerated response to injury in a limb with intense prolonged pain, vasomotor disturbance, delayed functional recovery and trophic changes. This review describes the current knowledge of the condition and outlines the methods of treatment available with particular emphasis on the knee.