Advertisement for orthosearch.org.uk
Results 1 - 77 of 77
Results per page:
Bone & Joint Research
Vol. 11, Issue 9 | Pages 629 - 638
1 Sep 2022
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Aims. Here we used a mature seven-day biofilm model of Staphylococcus aureus, exposed to antibiotics up to an additional seven days, to establish the effectiveness of either mechanical cleaning or antibiotics or non-contact induction heating, and which combinations could eradicate S. aureus in mature biofilms. Methods. Mature biofilms of S. aureus (ATCC 29213) were grown on titanium alloy (Ti6Al4V) coupons for seven days and were subjected to the following treatments or their combinations: antibiotics, mechanical cleaning, or heat shock by induction heating of 60°C for one minute. Experiments were repeated at least five times. Results. In the untreated biofilm, growth up to 1.8×10. 11. colony-forming units (CFU)/cm. 2. was observed. Treatment with ciprofloxacin, flucloxacillin, vancomycin, cefuroxime, and amoxicillin all with rifampicin gave 6.0 log, 6.1 log, 1.4 log, 4.8 log, and 3.6 log reduction in CFU/cm. 2. , respectively. Mechanical cleaning alone resulted in 4.9 log reduction and induction heating in 7.3 log reduction. There was an additional effect of ciprofloxacin, flucloxacillin, and induction heating when used in combinations. There was no additional effect for mechanical cleaning. No bacterial growth could be detected after induction heating followed by seven days of ciprofloxacin with rifampicin. Conclusion. Mechanical cleaning, antibiotics, and non-contact induction heating reduced the bacterial load of mature S. aureus biofilms with approximately 5 log or more as a single treatment. The effect of mechanical cleaning on mature S. aureus biofilms was limited when used in combination with antibiotics and/or induction heating. Cite this article: Bone Joint Res 2022;11(9):629–638


Bone & Joint Research
Vol. 13, Issue 10 | Pages 525 - 534
1 Oct 2024
Mu W Xu B Wang F Maimaitiaimaier Y Zou C Cao L

Aims. This study aimed to assess the risk of acute kidney injury (AKI) associated with combined intravenous (IV) and topical antibiotic therapy in patients undergoing treatment for periprosthetic joint infections (PJIs) following total knee arthroplasty (TKA), utilizing the Kidney Disease: Improving Global Outcomes (KDIGO) criteria for classification. Methods. We conducted a retrospective analysis of 162 knees (162 patients) that received treatment for PJI post-TKA with combined IV and topical antibiotic infusions at a single academic hospital from 1 January 2010 to 31 December 2022. The incidence of AKI was evaluated using the KDIGO criteria, focussing on the identification of significant predictors and the temporal pattern of AKI development. Results. AKI was identified in 9.26% (15/162) of the cohort, predominantly presenting as stage 1 AKI, which was transient in nature and resolved prior to discharge. The analysis highlighted moderate anaemia and lower baseline serum creatinine levels as significant predictors for the development of AKI. Notably, the study found no instances of severe complications such as wound dehiscence, skin erosion, or the need for haemodialysis following treatment. Conclusion. The findings suggest that the combined use of IV and topical antibiotic therapy in the management of PJIs post-TKA is associated with a low incidence of primarily transient stage 1 AKI. This indicates a potentially favourable renal safety profile, advocating for further research to confirm these outcomes and potentially influence treatment protocols in PJI management. Cite this article: Bone Joint Res 2024;13(10):525–534


Bone & Joint Research
Vol. 10, Issue 12 | Pages 790 - 796
1 Dec 2021
Fang X Wang Q Yang X Zhang F Huang C Huang Z Shen H Zhang W

Aims. To explore the effect of different durations of antibiotics after stage II reimplantation on the prognosis of two-stage revision for chronic periprosthetic joint infection (PJI). Methods. This study involved a retrospective collection of patients who underwent two-stage revision for chronic PJI and continued to use extended antibiotic prophylaxis in two regional medical centres from January 2010 to June 2018. The patients were divided into a short (≤ one month) or a long (> one month) course of treatment based on the duration of antibiotics following stage II reimplantation. The difference in the infection control rate between the two groups was compared, and prognostic factors for recurrence were analyzed. Results. A total of 105 patients with chronic PJI were enrolled: 64 patients in the short course group and 41 patients in the long course group. For 99 of the patients, the infection was under control during a follow-up period of at least 24 months after two-stage revision. For the short course group, the mean duration of antibiotic prophylaxis after stage II reimplantation was 20.17 days (SD 5.30) and the infection control rate was 95.3%; for the long course group these were 45.02 days (SD 15.03) and 92.7%, respectively. There was no significant difference in infection control rates between the two groups (p = 0.676). Cox regression analysis found that methicillin-resistant staphylococcus infection (p = 0.015) was an independent prognostic factor for recurrence. Conclusion. After stage II reimplantation surgery of two-stage revision for chronic PJI, extended antibiotic prophylaxis for less than one month can achieve good infection control rate. Cite this article: Bone Joint Res 2021;10(12):790–796


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA. Methods. For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed. Results. Vancomycin and linezolid were able to significantly (p < 0.05) reduce the MRSA bacterial count at implants. No significant effect was found at the bone. Rifampin was the only monotherapy that significantly reduced the bacterial count on implant and bone. The combination with vancomycin or linezolid showed significant efficacy. Treatment with cotrimoxazole alone did not achieve a significant bacterial count reduction. The combination of linezolid plus rifampin was significantly more effective on implant and bone than the control group in both trials. Conclusion. Although rifampicin is effective as a monotherapy, it should not be used because of the high rate of resistance development. Our animal experiments showed the great importance of combination antibiotic therapies. In the future, investigations with higher case numbers, varied bacterial concentrations, and changes in individual drug dosages will be necessary to be able to draw an exact comparison, possibly within a clinical trial. Cite this article: Bone Joint Res 2022;11(3):143–151


Bone & Joint Research
Vol. 10, Issue 1 | Pages 77 - 84
1 Jan 2021
Milstrey A Rosslenbroich S Everding J Raschke MJ Richards RG Moriarty TF Puetzler J

Aims. Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on Staphylococcus aureus biofilms in vitro in the presence and absence of antibiotic agents. Methods. S. aureus biofilms were grown on titanium discs (13 mm × 4 mm) in a bioreactor for 48 hours. Shockwaves were applied with either 250, 500, or 1,000 impulses onto the discs surrounded by either phosphate-buffered saline or antibiotic (rifampin alone or in combination with nafcillin). The number of viable bacteria was determined by quantitative culture after sonication. Representative samples were taken for scanning electron microscopy. Results. The application of fhESWT led to a ten-fold reduction in bacterial counts on the metal discs for all impulse numbers compared to the control (p < 0.001). Increasing the number of impulses did not further reduce bacterial counts in the absence of antibiotics (all p > 0.289). Antibiotics alone reduced the number of bacteria on the discs; however, the combined application of the fhESWT and antibiotic administration further reduced the bacterial count compared to the antibiotic treatment only (p = 0.032). Conclusion. The use of fhESWT significantly reduced the colony-forming unit (CFU) count of a S. aureus biofilm in our model independently, and in combination with antibiotics. Therefore, the supplementary application of fhESWT could be a helpful tool in the treatment of IFIs in certain cases, including infected nonunions. Cite this article: Bone Joint Res 2021;10(1):77–84


Bone & Joint Research
Vol. 13, Issue 10 | Pages 535 - 545
2 Oct 2024
Zou C Guo W Mu W Wahafu T Li Y Hua L Xu B Cao L

Aims. We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach. Methods. We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography. Results. The peak concentrations of vancomycin and meropenem in the joint cavity were observed at one hour post-injection, with mean values of 14,933.9 µg/ml (SD 10,176.3) and 5,819.1 µg/ml (SD 6,029.8), respectively. The trough concentrations at 24 hours were 5,495.0 µg/ml (SD 2,360.5) for vancomycin and 186.4 µg/ml (SD 254.3) for meropenem. The half-life of vancomycin was 6 hours, while that of meropenem ranged between 2 and 3.5 hours. No significant adverse events related to the antibiotic administration were observed. Conclusion. This method can achieve sustained high antibiotic concentrations within the joint space, exceeding the reported minimum biofilm eradication concentration. Our study highlights the remarkable effectiveness of intra-articular antibiotic infusion in delivering high intra-articular concentrations of antibiotics. The method provided sustained high antibiotic concentrations within the joint cavity, and no severe side-effects were observed. These findings offer evidence to improve clinical treatment strategies. However, further validation is required through studies with larger sample sizes and higher levels of evidence. Cite this article: Bone Joint Res 2024;13(10):535–545


Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims. The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty. Methods. A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated. Results. Escherichia coli was the most common pathogen in GN-PJI, and meropenem was the most sensitive antibiotic. Serum inflammatory markers, weightbearing activity, and Rissing score were significantly improved by meropenem, especially in the IA and IP + IA groups ( p < 0.05). Meropenem in the IA group eradicated E. coli from soft-tissue, bone, and prosthetic surfaces, with the same effect as in the IP + IA group. Radiological results revealed that IA and IP + IA meropenem were effective at relieving bone damage. Haematoxylin and eosin staining also showed that IA and IP + IA meropenem improved synovial inflammation and bone destruction. No pathological changes in the main organs or abnormal serum markers were observed in any of the meropenem-treated rats. The IA group required the lowest amount of meropenem, followed by the IP and IP + IA groups. Conclusion. IA-only meropenem with a two-week treatment course was effective and safe for PJI control following one-stage revision in a rat model, with less meropenem use. Cite this article: Bone Joint Res 2024;13(10):546–558


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims. Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone. Methods. S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs). Results. Halicin continued to exert significantly (p < 0.01) more antibacterial activity against biofilms grown on all tested orthopaedically relevant substrates than vancomycin, an antibiotic known to be affected by biofilm maturity. For example, halicin MBECs against both less mature and more mature biofilms were ten-fold to 40-fold higher than its MIC. In contrast, vancomycin MBECs against the less mature biofilms were 50-fold to 200-fold higher than its MIC, and 100-fold to 400-fold higher against the more mature biofilms. Conclusion. Halicin is a promising antibiotic that should be tested in animal models of orthopaedic infection. Cite this article: Bone Joint Res 2024;13(3):101–109


Bone & Joint Research
Vol. 13, Issue 8 | Pages 401 - 410
15 Aug 2024
Hu H Ding H Lyu J Chen Y Huang C Zhang C Li W Fang X Zhang W

Aims. This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment. Methods. A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not. Results. A total of 147 patients were included in the no-mNGS group and 88 in the mNGS group. The mNGS group had a higher detection rate of rare pathogens than the no-mNGS group (21.6% vs 10.2%, p = 0.016). However, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and higher infection control rates compared with the no-mNGS group (p = 0.017, p = 0.003, and p = 0.028, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.957). In culture-negative cases, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and a higher infection control rate than the no-mNGS group (p = 0.036, p = 0.033, p = 0.022, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.748). Conclusion. mNGS improves detection of rare pathogens in BJIs. mNGS testing reduces antibiotic-related complications, shortens hospital stay and antibiotic use duration, and improves treatment success rate, benefits which are particularly evident in culture-negative cases. Cite this article: Bone Joint Res 2024;13(8):401–410


Bone & Joint Research
Vol. 7, Issue 7 | Pages 447 - 456
1 Jul 2018
Morgenstern M Vallejo A McNally MA Moriarty TF Ferguson JY Nijs S Metsemakers W

Objectives. As well as debridement and irrigation, soft-tissue coverage, and osseous stabilization, systemic antibiotic prophylaxis is considered the benchmark in the management of open fractures and considerably reduces the risk of subsequent fracture-related infections (FRI). The direct application of antibiotics in the surgical field (local antibiotics) has been used for decades as additional prophylaxis in open fractures, although definitive evidence confirming a beneficial effect is scarce. The purpose of the present study was to review the clinical evidence regarding the effect of prophylactic application of local antibiotics in open limb fractures. Methods. A comprehensive literature search was performed in PubMed, Web of Science, and Embase. Cohort studies investigating the effect of additional local antibiotic prophylaxis compared with systemic prophylaxis alone in the management of open fractures were included and the data were pooled in a meta-analysis. Results. In total, eight studies which included 2738 patients were eligible for quantitative synthesis. The effect of antibiotic-loaded poly(methyl methacrylate) beads was investigated by six of these studies, and two studies evaluated the effect of local antibiotics applied without a carrier. Meta-analysis showed a significantly lower infection rate when local antibiotics were applied (4.6%; 91/1986) than in the control group receiving standard systemic prophylaxis alone (16.5%; 124/752) (p < 0.001) (odds ratio 0.30; 95% confidence interval 0.22 to 0.40). Conclusion. This meta-analysis suggests a risk reduction in FRI of 11.9% if additional local antibiotics are given prophylactically for open limb fractures. However, due to limited quality, heterogeneity, and considerable risk of bias, the pooling of data from primary studies has to be interpreted with caution. Cite this article: M. Morgenstern, A. Vallejo, M. A. McNally, T. F. Moriarty, J. Y. Ferguson, S. Nijs, WJ. Metsemakers. Bone Joint Res 2018;7:447–456. The effect of local antibiotic prophylaxis when treating open limb fractures: A systematic review and meta-analysis. DOI: 10.1302/2046-3758.77.BJR-2018-0043.R1


Bone & Joint Research
Vol. 10, Issue 2 | Pages 149 - 155
16 Feb 2021
Shiels SM Sgromolo NM Wenke JC

Aims. High-energy injuries can result in multiple complications, the most prevalent being infection. Vancomycin powder has been used with increasing frequency in orthopaedic trauma given its success in reducing infection following spine surgery. Additionally, large, traumatic injuries require wound coverage and management by dressings such as negative pressure wound therapy (NPWT). NPWT has been shown to decrease the ability of antibiotic cement beads to reduce infection, but its effect on antibiotic powder is not known. The goal of this study was to determine if NPWT reduces the efficacy of topically applied antibiotic powder. Methods. Complex musculoskeletal wounds were created in goats and inoculated with a strain of Staphylococcus aureus modified to emit light. Six hours after contaminating the wounds, imaging, irrigation, and debridement and treatment application were performed. Animals received either vancomycin powder with a wound pouch dressing or vancomycin powder with NPWT. Results. There were no differences in eradication of bacteria when vancomycin powder was used in combination with NPWT (4.5% of baseline) compared to vancomycin powder with a wound pouch dressing (1.7% of baseline) (p = 0.986), even though approximately 50% of the vancomycin was recovered in the NPWT exudate canister. Conclusion. The antimicrobial efficacy of the vancomycin powder was not diminished by the application of NPWT. These topical and locally applied therapies are potentially effective tools that can provide quick, simple treatments to prevent infection while providing coverage. By reducing the occurrence of infection, the recovery is shortened, leading to an overall improvement in quality of life. Cite this article: Bone Joint Res 2021;10(2):149–155


Bone & Joint Research
Vol. 13, Issue 3 | Pages 127 - 135
22 Mar 2024
Puetzler J Vallejo Diaz A Gosheger G Schulze M Arens D Zeiter S Siverino C Richards RG Moriarty TF

Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods. Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin + rifampin; four weeks, levofloxacin + rifampin). A control group (n = 5) received revision surgery after four weeks without antibiotics. Bacteriology of humerus, soft-tissue, and implants was performed seven weeks after revision surgery. Bone healing was assessed using a modified radiological union scale in tibial fractures (mRUST). Results. Greater bacterial burden in the early group compared to the delayed and control groups at revision surgery indicates a retraction of the infection from one to four weeks. Infection was cleared in all animals in the early and delayed groups at euthanasia, but not in the control group. Osteotomies healed in the early group, but bone healing was significantly compromised in the delayed and control groups. Conclusion. The duration of the infection from one to four weeks does not impact the success of infection clearance in this model. Bone healing, however, is impaired as the duration of the infection increases. Cite this article: Bone Joint Res 2024;13(3):127–135


Bone & Joint Research
Vol. 11, Issue 11 | Pages 835 - 842
17 Nov 2022
Wiesli MG Livio F Achermann Y Gautier E Wahl P

Aims. There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO. 4. ) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO. 4. applied locally to treat ODAI. Methods. A total of 30 operations with ceftriaxone-loaded CaSO. 4. had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results. A total of 37 wound fluid concentrations from 16 operations performed in 14 patients were collected. The ceftriaxone concentrations remained approximately within a range of 100 to 200 mg/l up to three weeks. The median concentration was 108.9 mg/l (interquartile range 98.8 to 142.5) within the first ten days. No systemic adverse reactions were observed. Conclusion. Our study highlights new clinical data of locally administered ceftriaxone with CaSO. 4. as carrier material. The near-constant release of ceftriaxone from CaSO. 4. observed in vitro could be confirmed in vivo. The concentrations remained below known local toxicity thresholds. Cite this article: Bone Joint Res 2022;11(11):835–842


Bone & Joint Research
Vol. 11, Issue 2 | Pages 49 - 60
1 Feb 2022
Li J Wong RMY Chung YL Leung SSY Chow SK Ip M Cheung W

Aims. With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI). Methods. A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 10. 4. colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed. Results. Agar plating analysis revealed a higher bacterial load in bone (p = 0.002), and gram staining showed higher cortical bone colonization (p = 0.039) in OVX-Inf compared to Sham-Inf. OVX-Inf showed significantly increased callus area (p = 0.013), but decreased high-density bone volume (p = 0.023) compared to Sham-Inf. IHC staining showed a significantly increased expression of TNF-α in OVX-Inf compared to OVX (p = 0.049). Significantly reduced bacterial load on bone (p = 0.001), enhanced ultimate load (p = 0.001), and energy to failure were observed in Sham-Inf-A compared to Sham-Inf (p = 0.028), but not in OVX-Inf-A compared to OVX-Inf. Conclusion. In osteoporotic bone with FRI, infection was more severe with more bone lysis and higher bacterial load, and fracture-healing was further delayed. Systemic antibiotics significantly reduced bacterial load and enhanced callus quality and strength in normal bone with FRI, but not in osteoporotic bone. Cite this article: Bone Joint Res 2022;11(2):49–60


Bone & Joint Research
Vol. 12, Issue 2 | Pages 113 - 120
1 Feb 2023
Cai Y Liang J Chen X Zhang G Jing Z Zhang R Lv L Zhang W Dang X

Aims. This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%). Methods. In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared. Results. The levels of SF-NETs in the PJI group were significantly higher than those of the AF group. The AUC of SF-NET was 0.971 (95% confidence interval (CI) 0.903 to 0.996), the sensitivity was 93.48% (95% CI 82.10% to 98.63%), the specificity was 96.43% (95% CI 81.65% to 99.91%), the accuracy was 94.60% (95% CI 86.73% to 98.50%), the positive predictive value was 97.73%, and the negative predictive value was 90%. Further analysis showed that SF-NET could improve the diagnosis of culture-negative PJI, patients with PJI who received antibiotic treatment preoperatively, and fungal PJI. Conclusion. SF-NET is a novel and ideal synovial fluid biomarker for PJI diagnosis, which could improve PJI diagnosis greatly. Cite this article: Bone Joint Res 2023;12(2):113–120


Bone & Joint Research
Vol. 12, Issue 8 | Pages 467 - 475
2 Aug 2023
Wu H Sun D Wang S Jia C Shen J Wang X Hou C Xie Z Luo F

Aims. This study was designed to characterize the recurrence incidence and risk factors of antibiotic-loaded cement spacer (ALCS) for definitive bone defect treatment in limb osteomyelitis. Methods. We included adult patients with limb osteomyelitis who received debridement and ALCS insertion into the bone defect as definitive management between 2013 and 2020 in our clinical centre. The follow-up time was at least two years. Data on patients’ demographics, clinical characteristics, and infection recurrence were retrospectively collected and analyzed. Results. In total, 314 patients with a mean age of 52.1 years (SD 12.1) were enrolled. After a mean of 50 months’ (24 to 96) follow-up, 53 (16.9%) patients had infection recurrence including 32 tibiae, ten femora, ten calcanea, and one humerus. Of all patients with recurrence, 30 (9.6%) occurred within one year and 39 (12.4%) within two years. Among them, 41 patients needed reoperation, five received antibiotics treatment only, and seven ultimately required amputations. Following multivariable analysis, we found that patients infected with Gram-negative bacilli were more likely to have a recurrence (odds ratio (OR) 2.38, 95% confidence interval (CI) 1.20 to 6.94; p = 0.046) compared to Staphylococcus aureus; segmental bone defects (OR 5.25, 95% CI 1.80 to 15.26; p = 0.002) and smoking (OR 3.00, 95% CI 1.39 to 6.50; p = 0.005) were also independent risk factors for recurrence after treatment. Conclusion. Permanent ALCS might be an alternative strategy for definitive bone defect management in selected osteomyelitis cases. However, the overall high recurrence found suggests that it should be cautiously treated. Additionally, segmental defects, Gram-negative infections, and smoking were associated with an increased risk of infection recurrence. Cite this article: Bone Joint Res 2023;12(8):467–475


Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Bone & Joint Research
Vol. 11, Issue 2 | Pages 112 - 120
16 Feb 2022
Vittrup SØ Hanberg P Knudsen MB Tøstesen SK Kipp JO Hansen J Jørgensen NP Stilling M Bue M

Aims. Prompt and sufficient broad-spectrum empirical antibiotic treatment is key to preventing infection following open tibial fractures. Succeeding co-administration, we dynamically assessed the time for which vancomycin and meropenem concentrations were above relevant epidemiological cut-off (ECOFF) minimal inhibitory concentrations (T > MIC) in tibial compartments for the bacteria most frequently encountered in open fractures. Low and high MIC targets were applied: 1 and 4 µg/ml for vancomycin, and 0.125 and 2 µg/ml for meropenem. Methods. Eight pigs received a single dose of 1,000 mg vancomycin and 1,000 mg meropenem simultaneously over 100 minutes and 10 minutes, respectively. Microdialysis catheters were placed for sampling over eight hours in tibial cancellous bone, cortical bone, and adjacent subcutaneous adipose tissue. Venous blood samples were collected as references. Results. Across the targeted ECOFF values, vancomycin displayed longer T > MIC in all the investigated compartments in comparison to meropenem. For both drugs, cortical bone exhibited the shortest T > MIC. For the low MIC targets and across compartments, mean T > MIC ranged between 208 and 449 minutes (46% to 100%) for vancomycin and between 189 and 406 minutes (42% to 90%) for meropenem. For the high MIC targets, mean T > MIC ranged between 30 and 446 minutes (7% to 99%) for vancomycin and between 45 and 181 minutes (10% to 40%) for meropenem. Conclusion. The differences in the T > MIC between the low and high targets illustrate how the interpretation of these results is highly susceptible to the defined MIC target. To encompass any trauma, contamination, or individual tissue differences, a more aggressive dosing approach may be considered to achieve longer T > MIC in all the exposed tissues, and thereby lower the risk of acquiring an infection after open tibial fractures. Cite this article: Bone Joint Res 2022;11(2):112–120


Aims. This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). Methods. A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology. Results. The Vm-MBs and Mp-MBs met the experimental requirements. The biofilm biomass in the Vm, Vm-MBs, UTMD, and Vm-MBs + UTMD groups was significantly lower than in the control group. MRSA and E. coli biofilms were most notably damaged in the Vm-MBs + UTMD group and Mp-MBs + UTMD group, respectively, with mean 21.55% (SD 0.08) and 19.73% (SD 1.25) remaining in the biofilm biomass. Vm-MBs + UTMD significantly reduced biofilm thickness and bacterial viability (p = 0.005 and p < 0.0001, respectively). Mp-MBs + UTMD could significantly decrease biofilm thickness and bacterial viability (allp < 0.001). Plate-counting method showed that the numbers of MRSA and E. coli bacterial colonies were significantly lower in the Vm-MBs + UTMD group and the Mp, Mp-MBs, UTMD, Mp-MBs + UTMD groups compared to the control group (p = 0.031). SEM showed that the morphology and structure of MRSA and E. coli were significantly damaged in the Vm-MBs + UTMD and Mp-MBs + UTMD groups. Conclusion. Vm-MBs or Mp-MBs combined with UTMD can effectively disrupt biofilms and protectively release antibiotics under ultrasound mediation, significantly reducing bacterial viability and improving the bactericidal effect of antibiotics. Cite this article: Bone Joint Res 2024;13(9):441–451


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims. To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. Methods. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection. Results. When 10 mM or higher EDTA-NS concentrations were used for ten minutes, over 99% of S. aureus biofilm formed on all three types of materials was eradicated in terms of absorbance measured at 595 nm and colony-forming units (CFUs) after culturing. Consistently, SEM and CSLM scanning demonstrated that less adherence of S. aureus could be observed on all three types of materials after 10 mM EDTA-NS irrigation for ten minutes. In the rat model, compared with NS irrigation combined with rifampin (Ti-6Al-4V wire-implanted rats: 60% bacteria survived; HXLPE particle-implanted rats: 63.3% bacteria survived), EDTA-NS irrigation combined with rifampin produced the highest removal rate (Ti-6Al-4V wire-implanted rats: 3.33% bacteria survived; HXLPE particle-implanted rats: 6.67% bacteria survived). In the pig model, compared with NS irrigation combined with rifampin (Ti-6Al-4V plates: 75% bacteria survived; HXLPE bearings: 87.5% bacteria survived), we observed a similar level of biofilm disruption on Ti-6Al-4V plates (25% bacteria survived) and HXLPE bearings (37.5% bacteria survived) after EDTA-NS irrigation combined with rifampin. The in vivo study revealed that the biomass of S. aureus biofilm was significantly reduced when treated with rifampin following irrigation and debridement, as indicated by both the biofilm bacterial burden and crystal violet staining. EDTA-NS irrigation (10 mM/10 min) combined with rifampin effectively removes S. aureus biofilm-associated infections both in vitro and in vivo. Conclusion. EDTA-NS irrigation with or without antibiotics is effective in eradicating S. aureus biofilm-associated infection both ex and in vivo. Cite this article: Bone Joint Res 2024;13(1):40–51


Bone & Joint Research
Vol. 9, Issue 2 | Pages 49 - 59
1 Feb 2020
Yu K Song L Kang HP Kwon H Back J Lee FY

Aims. To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant Staphylococcus aureus (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone. Methods. Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified. We tested the effects of cefazolin, gentamicin, vancomycin, tetracycline, rifampicin, and ampicillin, as well as agents used in surgical preparation and irrigation. Results. MRSA infiltrated bone-resident cells within 15 to 30 minutes. Penetration was most effectively prevented with early (i.e. 30 minutes) antibiotic administration. The combined administration of rifampicin with other antibiotics potentiated their protective effects against MRSA-induced cytotoxicity and most significantly reduced extracellular bacterial bioburden. Gentamicin-containing compounds were most effective in reducing intracellular MRSA bioburden. Of the surgical preparation agents evaluated, betadine reduced in vitro MRSA growth to the greatest extent. Conclusion. The standard of care for open fractures involves debridement and antibiotics within the first six hours of injury but does not account for the window in which bacteria penetrate cells. Antibiotics must be administered as early as possible after injury or prior to incision to prevent intracellular infestation. Rifampicin can potentiate the capacity of antibiotic regimens to reduce MRSA-induced cytotoxicity. Cite this article:Bone Joint Res. 2020;9(2):49–59


Bone & Joint Research
Vol. 10, Issue 3 | Pages 218 - 225
1 Mar 2021
Wiesli MG Kaiser J Gautier E Wick P Maniura-Weber K Rottmar M Wahl P

Aims. In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. Methods. Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied. Results. Ceftriaxone showed a cytotoxic effect on human bone progenitor cells at 24 h and 48 h at concentrations above 15,000 mg/l. With a longer incubation time of ten days, subtoxic effects could be observed at concentrations above 500 mg/l. Gene and protein expression of collagen, as well as mineralization levels of human bone progenitor cells, showed a continuous decrease with increasing ceftriaxone concentrations by days 14 and 28, respectively. Notably, mineralization was negatively affected already at concentrations above 250 mg/l. Conclusion. This study demonstrates a concentration-dependent influence of ceftriaxone on the viability and mineralization potential of primary human bone progenitor cells. While local application of ceftriaxone is highly established in orthopaedic and trauma surgery, a therapeutic threshold of 250 mg/l or lower should diminish the risk of reduced osseointegration of prosthetic implants. Cite this article: Bone Joint Res 2021;10(3):218–225


Bone & Joint Research
Vol. 10, Issue 2 | Pages 96 - 104
28 Jan 2021
Fang X Zhang L Cai Y Huang Z Li W Zhang C Yang B Lin J Wahl P Zhang W

Aims. Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that microorganisms are not released from the tissues, either due to biofilm formation or intracellular persistence. This study aimed to optimize tissue pretreatment methods in order to improve detection of microorganisms. Methods. From December 2017 to September 2019, patients undergoing revision arthroplasty in a single centre due to PJI and aseptic failure (AF) were included, with demographic data and laboratory test results recorded prospectively. Periprosthetic tissue samples were collected intraoperatively and assigned to tissue-mechanical homogenization (T-MH), tissue-manual milling (T-MM), tissue-dithiothreitol (T-DTT) treatment, tissue-sonication (T-S), and tissue-direct culture (T-D). The yield of the microbial cultures was then analyzed. Results. A total of 46 patients were enrolled, including 28 patients in the PJI group and 18 patients in the AF group. In the PJI group, 23 cases had positive culture results via T-MH, 22 cases via T-DTT, 20 cases via T-S, 15 cases via T-MM, and 13 cases via T-D. Three cases under ongoing antibiotic treatment remained culture-negative. Five tissue samples provided the optimal yield. Any ongoing antibiotic treatment had a relevant influence on culture sensitivity, except for T-DTT. Conclusion. T-MH had the highest sensitivity. Combining T-MH with T-DTT, which requires no special equipment, may effectively improve bacterial detection in PJI. A total of five periprosthetic tissue biopsies should be sampled in revision arthroplasty for optimal detection of PJI. Cite this article: Bone Joint Res 2021;10(2):96–104


Bone & Joint Research
Vol. 8, Issue 11 | Pages 526 - 534
1 Nov 2019
Yang C Wang J Yin Z Wang Q Zhang X Jiang Y Shen H

Objectives. The optimal protocol for antibiotic loading in the articulating cement spacers for the treatment of prosthetic joint infection (PJI) remains controversial. The objective of the present study was to investigate the effectiveness of articulating cement spacers loaded with a new combination of antibiotics. Methods. A retrospective cohort study involving 114 PJI cases treated with implantation of an articulating cement spacer between 2005 and 2016 was performed. The treatment outcomes of the conventional protocol (i.e. gentamicin and vancomycin (GV protocol)) were compared with those reported using the sophisticated antibiotic-loading protocol (i.e. vancomycin, meropenem, and amphotericin (VMA protocol)). Results. There were 62 and 52 PJI cases treated with the GV and VMA protocols, respectively. Antimicrobial susceptibility testing revealed that 22/78 of all isolates (28.2%) in this series were resistant to gentamicin, whereas there were no vancomycin-, meropenem-, or amphotericin-resistant strains. The overall infection recurrence rates were 17.7% (11/62) and 1.9% (1/52), respectively (p = 0.006). In patients with a negative preoperative culture, there was no infection recurrence reported in the VMA cohort (0/45 (0%) vs 10/54 (18.5%) in the GV cohort; p = 0.002). Multivariate analysis indicated that the VMA protocol correlated with a decreased risk of infection recurrence compared with the GV protocol (p = 0.025). Conclusion. The sophisticated VMA protocol for the loading of antibiotics in articulating cement spacers, as part of a two-stage exchange, was associated with a reduced rate of infection recurrence. This proposed protocol appears to be safe and effective, especially in patients with negative culture results prior to the first-stage operation. Cite this article: Bone Joint Res 2019;8:526–534


Bone & Joint Research
Vol. 8, Issue 11 | Pages 526 - 534
1 Nov 2019
Yang C Wang J Yin Z Wang Q Zhang X Jiang Y Shen H

Objectives. The optimal protocol for antibiotic loading in the articulating cement spacers for the treatment of prosthetic joint infection (PJI) remains controversial. The objective of the present study was to investigate the effectiveness of articulating cement spacers loaded with a new combination of antibiotics. Methods. A retrospective cohort study involving 114 PJI cases treated with implantation of an articulating cement spacer between 2005 and 2016 was performed. The treatment outcomes of the conventional protocol (i.e. gentamicin and vancomycin (GV protocol)) were compared with those reported using the sophisticated antibiotic-loading protocol (i.e. vancomycin, meropenem, and amphotericin (VMA protocol)). Results. There were 62 and 52 PJI cases treated with the GV and VMA protocols, respectively. Antimicrobial susceptibility testing revealed that 22/78 of all isolates (28.2%) in this series were resistant to gentamicin, whereas there were no vancomycin-, meropenem-, or amphotericin-resistant strains. The overall infection recurrence rates were 17.7% (11/62) and 1.9% (1/52), respectively (p = 0.006). In patients with a negative preoperative culture, there was no infection recurrence reported in the VMA cohort (0/45 (0%) vs 10/54 (18.5%) in the GV cohort; p = 0.002). Multivariate analysis indicated that the VMA protocol correlated with a decreased risk of infection recurrence compared with the GV protocol (p = 0.025). Conclusion. The sophisticated VMA protocol for the loading of antibiotics in articulating cement spacers, as part of a two-stage exchange, was associated with a reduced rate of infection recurrence. This proposed protocol appears to be safe and effective, especially in patients with negative culture results prior to the first-stage operation. Cite this article: Bone Joint Res 2019;8:526–534


Bone & Joint Research
Vol. 9, Issue 4 | Pages 192 - 199
1 Apr 2020
Pijls BG Sanders IMJG Kujiper EJ Nelissen RGHH

Aims. Induction heating is a noninvasive, nonantibiotic treatment modality that can potentially be used to cause thermal damage to the bacterial biofilm on the metal implant surface. The purpose of this study was to determine the effectiveness of induction heating on killing Staphylococcus epidermidis from biofilm and to determine the possible synergistic effect of induction heating and antibiotics. Methods. S. epidermidis biofilms were grown on titanium alloy (Ti6Al4V) coupons for 24 hours (young biofilm) and seven days (mature biofilm). These coupons with biofilm were heated to temperatures of 50°C, 55°C, 60°C, 65°C, 70°C, 80°C, and 90°C for 3.5 minutes and subsequently exposed to vancomycin and rifampicin at clinically relevant concentrations. Results. For the young biofilm, total eradication was observed at 65°C or higher for 3.5 minutes followed by 24 hours of vancomycin 10 mg/l and rifampicin 1 mg/l. For the mature biofilm, total eradication was observed at 60°C for 3.5 minutes followed by 24 hours of vancomycin 10 mg/l and rifampicin 1 mg/l. Total eradication was also observed at 60°C for 3.5 minutes followed by 24 hours of vancomycin 1 mg/l and rifampicin 1 mg/l followed by another thermal shock of 60°C for 3.5 minutes (two thermal shocks). Conclusion. Induction heating of Ti6Al4V coupons is effective in reducing bacterial load in vitro for S. epidermidis biofilms. Induction heating and antibiotics have a synergistic effect resulting in total eradication of the biofilm at 60°C or higher for clinically relevant concentrations of vancomycin and rifampicin. Cite this article:Bone Joint Res. 2020;9(4):192–199


Bone & Joint Research
Vol. 9, Issue 2 | Pages 71 - 76
1 Feb 2020
Gao T Lin J Zhang C Zhu H Zheng X

Aims. The purpose of this study was to determine whether intracellular Staphylococcus aureus is associated with recurrent infection in a rat model of open fracture. Methods. After stabilizing with Kirschner wire, we created a midshaft femur fracture in Sprague-Dawley rats and infected the wound with green fluorescent protein (GFP)-tagged S. aureus. After repeated debridement and negative swab culture was achieved, the isolation of GFP-containing cells from skin, bone marrow, and muscle was then performed. The composition and viability of intracellular S. aureus in isolated GFP-positive cells was assessed. We suppressed the host immune system and observed whether recurrent infection would occur. Finally, rats were assigned to one of six treatment groups (a combination of antibiotic treatment and implant removal/retention). The proportion of successful eradication was determined. Results. Green fluorescent protein-containing cells were successfully isolated after the swab culture was negative from skin (n = 0, 0%), muscle (n = 10, 100%), and bone marrow (n = 10, 100%) of a total of ten rats. The phagocytes were predominant in GFP-positive cells from muscle (73%) and bone marrow (81%) with a significantly higher viability of intracellular S. aureus (all p-values < 0.001). The recurrent infection occurred in up to 75% of rats after the immunosuppression. The proportion of successful eradication was not associated with implant retention or removal, and the efficacy of linezolid in eradicating intracellular S. aureus is significantly higher than that of vancomycin. Conclusion. Intracellular S. aureus is associated with recurrent infection in the rat model of open fracture. Usage of linezolid, a membrane-permeable antibiotic, is an effective strategy against intracellular S. aureus. Cite this article:Bone Joint Res. 2020;9(2):71–76


Bone & Joint Research
Vol. 9, Issue 12 | Pages 848 - 856
1 Dec 2020
Ramalhete R Brown R Blunn G Skinner J Coathup M Graney I Sanghani-Kerai A

Aims. Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. Methods. Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks. Results. ABG-gentamicin was bactericidal from 10 μg/ml and could release bactericidal concentrations over seven days, preventing biofilm formation. A concentration of 75 μg/ml of gentamicin in ABG showed the highest bactericidal effect up to day 7. On titanium disks, a significant bacterial reduction on ABG-gentamicin coated disks was observed when compared to both uncoated (mean 2-log reduction) and ABG-coated (mean 3-log reduction) disks, at days 3 and 7. ABG alone exhibited no antimicrobial or anti-biofilm properties. However, a concentration of 75 μg/ml gentamicin in ABG sustains release over seven days and significantly reduced biofilm formation. Its use as an implant coating in patients with a high risk of infection may prevent bacterial adhesion perioperatively and in the early postoperative period. Conclusion. ABG’s use as a carrier for stem cells was effective, as it supported cell growth. It has the potential to co-deliver compatible cells, drugs, and growth factors. However, ABG-gentamicin’s potential needs to be further justified using in vivo studies. Cite this article: Bone Joint Res 2020;9(12):848–856


Bone & Joint Research
Vol. 9, Issue 8 | Pages 450 - 456
1 Aug 2020
Zhang Z Cai Y Bai G Zhang C Li W Yang B Zhang W

Aims. This study aimed to evaluate calprotectin in synovial fluid for diagnosing chronic prosthetic joint infection (PJI) . Methods. A total of 63 patients who were suspected of PJI were enrolled. The synovial fluid calprotectin was tested by an enzyme-linked immunosorbent assay (ELISA). Laboratory test data, such as ESR, CRP, synovial fluid white blood cells (SF-WBCs), and synovial fluid polymorphonuclear cells (SF-PMNs), were documented. Chi-squared tests were used to compare the sensitivity and specificity of calprotectin and laboratory tests. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated to determine diagnostic efficacy. Results. The median calprotectin level was 776 μg/ml (interquartile range (IQR) 536.5 to 1132) in the PJI group and 54.5 μg/ml (IQR, 38.75 to 78.25) in the aseptic failure (AF) group (p < 0.05). Using a threshold of 173 ug/ml, the sensitivity was 95.2%, with a 97.6% specificity, and the AUC was 0.993. The sensitivity of calprotectin of the antibiotic-treated PJI group was 100% versus 90.9% of the non-antibiotic-treated PJI group. Although 47.6% (ten cases) of the patients in the PJI group received antibiotics before aspiration, the diagnostic efficacy of calprotectin was not affected. The sensitivity and specificity of ESR, CRP, SF-WBCs, and SF-PMNs ranged from 76.2% to 90.5% and 64.3% to 85.7%, respectively. Conclusion. Calprotectin in synovial fluid has great diagnostic efficacy for PJI diagnosisand outperformed ESR, CRP, SF-WBCs, and SF-PMNs. Cite this article: Bone Joint Res 2020;9(8):450–456


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 3 - 9
1 Jan 2019
Alamanda VK Springer BD

Aims. Prosthetic joint infection (PJI) remains a serious complication that is associated with high morbidity and costs. The aim of this study was to prepare a systematic review to examine patient-related and perioperative risk factors that can be modified in an attempt to reduce the rate of PJI. Materials and Methods. A search of PubMed and MEDLINE was conducted for articles published between January 1990 and February 2018 with a combination of search terms to identify studies that dealt with modifiable risk factors for reducing the rate of PJI. An evidence-based review was performed on 12 specific risk factors: glycaemic control, obesity, malnutrition, smoking, vitamin D levels, preoperative Staphylococcus aureus screening, the management of anti-rheumatic medication, perioperative antibiotic prophylaxis, presurgical skin preparation, the operating room environment, irrigant options, and anticoagulation. Results. Poor glycaemic control, obesity, malnutrition, and smoking are all associated with increased rates of PJI. Vitamin D replacement has been shown in preliminary animal studies to decrease rates of PJI. Preoperative Staphylococcus aureus screening and appropriate treatment results in decreased rates of PJI. Perioperative variables, such as timely and appropriate dosage of prophylactic antibiotics, skin preparation with chlorohexidine-based solution, and irrigation with dilute betadine at the conclusion of the operation, have all been associated with reduced rates of PJI. Similarly, aggressive anticoagulation and increased operating room traffic should be avoided to help minimize risk of PJI. Conclusion. PJI remains a serious complication of arthroplasty. Surgeons should be vigilant of the modifiable risk factors that can be addressed in an attempt to reduce the risk of PJI


Bone & Joint Research
Vol. 8, Issue 2 | Pages 49 - 54
1 Feb 2019
Stravinskas M Nilsson M Vitkauskiene A Tarasevicius S Lidgren L

Objectives. The aim of this study was to analyze drain fluid, blood, and urine simultaneously to follow the long-term release of vancomycin from a biphasic ceramic carrier in major hip surgery. Our hypothesis was that there would be high local vancomycin concentrations during the first week with safe low systemic trough levels and a complete antibiotic release during the first month. Methods. Nine patients (six female, three male; mean age 75.3 years (sd 12.3; 44 to 84)) with trochanteric hip fractures had internal fixations. An injectable ceramic bone substitute, with hydroxyapatite in a calcium sulphate matrix, containing 66 mg of vancomycin per millilitre, was inserted to augment the fixation. The vancomycin elution was followed by simultaneously collecting drain fluid, blood, and urine. Results. The antibiotic concentration in the drain reached a peak during the first six hours post-surgery (mean 966.1 mg/l), which decreased linearly to a mean value of 88.3 mg/l at 2.5 days. In the urine, the vancomycin concentration reached 99.8 mg/l during the first two days, followed by a logarithmic decrease over the next two weeks to reach 0 mg/l at 20 days. The systemic concentration of vancomycin measured in blood serum was low and decreased linearly from 2.17 mg/l at one hour post-surgery to 0 mg/l at four days postoperatively. Conclusion. This is the first long-term pharmacokinetic study that reports vancomycin release from a biphasic injectable ceramic bone substitute. The study shows initial high targeted local vancomycin levels, sustained and complete release at three weeks, and systemic concentrations well below toxic levels. The plain ceramic bone substitute has been proven to regenerate bone but should also be useful in preventing bone infection. Cite this article: M. Stravinskas, M. Nilsson, A. Vitkauskiene, S. Tarasevicius, L. Lidgren. Vancomycin elution from a biphasic ceramic bone substitute. Bone Joint Res 2019;8:49–54. DOI: 10.1302/2046-3758.82.BJR-2018-0174.R2


Aims. Methicillin-resistant Staphylococcus aureus (MRSA) can cause wound infections via a ‘Trojan Horse’ mechanism, in which neutrophils engulf intestinal MRSA and travel to the wound, releasing MRSA after apoptosis. The possible role of intestinal MRSA in prosthetic joint infection (PJI) is unknown. Methods. Rats underwent intestinal colonization with green fluorescent protein (GFP)-tagged MRSA by gavage and an intra-articular wire was then surgically implanted. After ten days, the presence of PJI was determined by bacterial cultures of the distal femur, joint capsule, and implant. We excluded several other possibilities for PJI development. Intraoperative contamination was excluded by culturing the specimen obtained from surgical site. Extracellular bacteraemia-associated PJI was excluded by comparing with the infection rate after intravenous injection of MRSA or MRSA-carrying neutrophils. To further support this theory, we tested the efficacy of prophylactic membrane-permeable and non-membrane-permeable antibiotics in this model. Results. After undergoing knee surgery eight or 72 hours after colonization, five out of 20 rats (25.0%) and two out of 20 rats (10.0%) developed PJI, respectively. Strikingly, 11 out of 20 rats (55.0%) developed PJI after intravenous injection of MRSA-carrying neutrophils that were isolated from rats with intestinal MRSA colonization. None of the rats receiving intravenous injections of MRSA developed PJI. These results suggest that intestinal MRSA carried by neutrophils could cause PJI in our rat model. Ten out of 20 (50.0%) rats treated with non-membrane-permeable gentamicin developed PJI, whereas only one out of 20 (5.0%) rats treated with membrane-permeable linezolid developed PJI. Conclusion. Neutrophils as carriers of intestinal MRSA may play an important role in PJI development. Cite this article:Bone Joint Res. 2020;9(4):152–161


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims

To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI).

Methods

A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims

Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella.

Methods

For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 546 - 558
12 Sep 2023
Shen J Wei Z Wang S Wang X Lin W Liu L Wang G

Aims

This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes.

Methods

A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 353 - 361
10 Jul 2024
Gardete-Hartmann S Mitterer JA Sebastian S Frank BJH Simon S Huber S Löw M Sommer I Prinz M Halabi M Hofstaetter JG

Aims

This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative diagnostic tool.

Methods

Five groups representing common microbiological scenarios in hip and knee revision arthroplasty were selected from our arthroplasty registry, prospectively maintained PJI databases, and biobank: 1) unexpected-negative cultures (UNCs), 2) unexpected-positive cultures (UPCs), 3) single-positive intraoperative cultures (SPCs), and 4) clearly septic and 5) aseptic cases. In total, 268 archived synovial fluid samples from 195 patients who underwent acute/chronic revision total hip or knee arthroplasty were included. Cases were classified according to the International Consensus Meeting 2018 criteria. JI panel evaluation of synovial fluid was performed, and the results were compared with cultures.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 331 - 338
16 May 2023
Szymski D Walter N Krull P Melsheimer O Grimberg A Alt V Steinbrueck A Rupp M

Aims

The aim of this investigation was to compare risk of infection in both cemented and uncemented hemiarthroplasty (HA) as well as in total hip arthroplasty (THA) following femoral neck fracture.

Methods

Data collection was performed using the German Arthroplasty Registry (EPRD). In HA and THA following femoral neck fracture, fixation method was divided into cemented and uncemented prostheses and paired according to age, sex, BMI, and the Elixhauser Comorbidity Index using Mahalanobis distance matching.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims

Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI).

Methods

A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 559 - 570
14 Sep 2023
Wang Y Li G Ji B Xu B Zhang X Maimaitiyiming A Cao L

Aims

To investigate the optimal thresholds and diagnostic efficacy of commonly used serological and synovial fluid detection indexes for diagnosing periprosthetic joint infection (PJI) in patients who have rheumatoid arthritis (RA).

Methods

The data from 348 patients who had RA or osteoarthritis (OA) and had previously undergone a total knee (TKA) and/or a total hip arthroplasty (THA) (including RA-PJI: 60 cases, RA-non-PJI: 80 cases; OA-PJI: 104 cases, OA-non-PJI: 104 cases) were retrospectively analyzed. A receiver operating characteristic curve was used to determine the optimal thresholds of the CRP, ESR, synovial fluid white blood cell count (WBC), and polymorphonuclear neutrophil percentage (PMN%) for diagnosing RA-PJI and OA-PJI. The diagnostic efficacy was evaluated by comparing the area under the curve (AUC) of each index and applying the results of the combined index diagnostic test.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 321 - 330
9 May 2023
Lenguerrand E Whitehouse MR Beswick AD Kunutsor SK Webb JCJ Mehendale S Porter M Blom AW

Aims

We compared the risks of re-revision and mortality between two-stage and single-stage revision surgeries among patients with infected primary hip arthroplasty.

Methods

Patients with a periprosthetic joint infection (PJI) of their primary arthroplasty revised with single-stage or two-stage procedure in England and Wales between 2003 and 2014 were identified from the National Joint Registry. We used Poisson regression with restricted cubic splines to compute hazard ratios (HRs) at different postoperative periods. The total number of revisions and re-revisions undergone by patients was compared between the two strategies.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims

This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI).

Methods

A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 13, Issue 12 | Pages 695 - 702
1 Dec 2024
Cordero García-Galán E Medel-Plaza M Pozo-Kreilinger JJ Sarnago H Lucía Ó Rico-Nieto A Esteban J Gomez-Barrena E

Aims

Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting.

Methods

Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Staphylococcus aureus biofilm. Sacrifice and sample collection were performed 24, 48, or 96 hours postoperatively. Retrieved screws were sonicated, and adhered bacteria were estimated via drop-plate. Width of bone necrosis in retrieved femora was assessed through microscopic examination. Analysis was performed using non-parametric tests with significance fixed at p ≤ 0.05.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 372 - 382
1 Aug 2024
Luger M Böhler C Puchner SE Apprich S Staats K Windhager R Sigmund IK

Aims

Serum inflammatory parameters are widely used to aid in diagnosing a periprosthetic joint infection (PJI). Due to their limited performances in the literature, novel and more accurate biomarkers are needed. Serum albumin-to-globulin ratio (AGR) and serum CRP-to-albumin ratio (CAR) have previously been proposed as potential new parameters, but results were mixed. The aim of this study was to assess the diagnostic accuracy of AGR and CAR in diagnosing PJI and to compare them to the established and widely used marker CRP.

Methods

From 2015 to 2022, a consecutive series of 275 cases of revision total hip (n = 129) and knee arthroplasty (n = 146) were included in this retrospective cohort study. Based on the 2021 European Bone and Joint Infection Society (EBJIS) definition, 144 arthroplasties were classified as septic. Using receiver operating characteristic curve (ROC) analysis, the ideal thresholds and diagnostic performances were calculated. The areas under the curve (AUCs) were compared using the z-test.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims

The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI.

Methods

Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20).


Bone & Joint Research
Vol. 13, Issue 11 | Pages 632 - 646
7 Nov 2024
Diaz Dilernia F Watson D Heinrichs DE Vasarhelyi E

Aims

The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against Staphylococcus aureus.

Methods

We performed in vitro growth and viability assays to determine the capability of S. aureus to survive in SF with the addition of 10 µM of copper. We determined the minimum bactericidal concentration of copper (MBC-Cu) and evaluated its sensitivity to killing, comparing wild type (WT) and CopAZB-deficient USA300 strains.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims

Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.

Methods

99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 690 - 699
4 Oct 2022
Lenguerrand E Whitehouse MR Kunutsor SK Beswick AD Baker RP Rolfson O Reed MR Blom AW

Aims

We compared the risks of re-revision and mortality between two-stage revision surgery and single-stage revision surgery among patients with infected primary knee arthroplasty.

Methods

Patients with a periprosthetic joint infection (PJI) of their primary knee arthroplasty, initially revised with a single-stage or a two-stage procedure in England and Wales between 2003 and 2014, were identified from the National Joint Registry. We used Poisson regression with restricted cubic splines to compute hazard ratios (HR) at different postoperative periods. The total number of revisions and re-revisions undergone by patients was compared between the two strategies.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 327 - 341
23 May 2022
Alagboso FI Mannala GK Walter N Docheva D Brochhausen C Alt V Rupp M

Aims

Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy.

Methods

The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 608 - 618
7 Sep 2022
Sigmund IK Luger M Windhager R McNally MA

Aims

This study evaluated the definitions developed by the European Bone and Joint Infection Society (EBJIS) 2021, the International Consensus Meeting (ICM) 2018, and the Infectious Diseases Society of America (IDSA) 2013, for the diagnosis of periprosthetic joint infection (PJI).

Methods

In this single-centre, retrospective analysis of prospectively collected data, patients with an indicated revision surgery after a total hip or knee arthroplasty were included between 2015 and 2020. A standardized diagnostic workup was performed, identifying the components of the EBJIS, ICM, and IDSA criteria in each patient.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims

We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan.

Methods

We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims

Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive.

Methods

We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 380 - 387
5 Jul 2021
Shen J Sun D Fu J Wang S Wang X Xie Z

Aims

In contrast to operations performed for other fractures, there is a high incidence rate of surgical site infection (SSI) post-open reduction and internal fixation (ORIF) done for tibial plateau fractures (TPFs). This study investigates the effect of induced membrane technique combined with internal fixation for managing SSI in TPF patients who underwent ORIF.

Methods

From April 2013 to May 2017, 46 consecutive patients with SSI post-ORIF for TPFs were managed in our centre with an induced membrane technique. Of these, 35 patients were included for this study, with data analyzed in a retrospective manner.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 156 - 165
1 Mar 2021
Yagi H Kihara S Mittwede PN Maher PL Rothenberg AC Falcione ADCM Chen A Urish KL Tuan RS Alexander PG

Aims

Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur.

Methods

Fresh suspensions of Staphylococcus aureus (ATCC 25923) were prepared in phosphate-buffered saline (PBS) (1 × 109 colony-forming units (CFUs)/ml). Periprosthetic osteomyelitis in female New Zealand white rabbits was induced by intraosseous injection of planktonic bacterial suspension into a predrilled bone tunnel prior to implant screw placement, examined at five and 28 days (n = 5/group) after surgery, and compared to a control aseptic screw group. Radiographs were obtained weekly, and blood was collected to measure ESR, CRP, and white blood cell (WBC) counts. Bone samples and implanted screws were harvested on day 28, and processed for histological analysis and viability assay of bacteria, respectively.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 60 - 67
1 Jan 2021
Bendtsen MAF Bue M Hanberg P Slater J Thomassen MB Hansen J Søballe K Öbrink-Hansen K Stilling M

Aims

Flucloxacillin is commonly administered intravenously for perioperative antimicrobial prophylaxis, while oral administration is typical for prophylaxis following smaller traumatic wounds. We assessed the time, for which the free flucloxacillin concentration was maintained above the minimum inhibitory concentration (fT > MIC) for methicillin-susceptible Staphylococcus aureus in soft and bone tissue, after intravenous and oral administration, using microdialysis in a porcine model.

Methods

A total of 16 pigs were randomly allocated to either intravenous (Group IV) or oral (Group PO) flucloxacillin 1 g every six hours during a 24-hour period. Microdialysis was used for sampling in cancellous and cortical bone, subcutaneous tissue, and the knee joint. In addition, plasma was sampled. The flucloxacillin fT > MIC was evaluated using a low MIC target (0.5 μg/ml) and a high MIC target (2.0 μg/ml).


Aims

Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones.

Methods

Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 778 - 788
1 Nov 2020
Xu H Yang J Xie J Huang Z Huang Q Cao G Pei F

Aims

The efficacy and safety of intrawound vancomycin for preventing surgical site infection in primary hip and knee arthroplasty is uncertain.

Methods

A systematic review of the literature was conducted, indexed from inception to March 2020 in PubMed, Web of Science, Cochrane Library, Embase, and Google Scholar databases. All studies evaluating the efficacy and/or safety of intrawound vancomycin in patients who underwent primary hip and knee arthroplasty were included. Incidence of periprosthetic joint infection (PJI), superficial infection, aseptic wound complications, acute kidney injury, anaphylactic reaction, and ototoxicity were meta-analyzed. Results were reported as odds ratios (ORs) and 95% confidence intervals (CIs). The quality of included studies was assessed using the risk of bias in non-randomized studies of interventions (ROBINS-I) assessment tool.


Bone & Joint Research
Vol. 10, Issue 5 | Pages 321 - 327
3 May 2021
Walter N Rupp M Hierl K Pfeifer C Kerschbaum M Hinterberger T Alt V

Aims

We aimed to evaluate the long-term impact of fracture-related infection (FRI) on patients’ physical health and psychological wellbeing. For this purpose, quality of life after successful surgical treatment of FRIs of long bones was assessed.

Methods

A total of 37 patients treated between November 2009 and March 2019, with achieved eradication of infection and stable bone consolidation after long bone FRI, were included. Quality of life was evaluated with the EuroQol five-dimension questionnaire (EQ-5D) and German Short-Form 36 (SF-36) outcome instruments as well as with an International Classification of Diseases of the World Health Organization (ICD)-10 based symptom rating (ISR) and compared to normative data.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 440 - 449
1 Jul 2020
Huang Z Li W Lee G Fang X Xing L Yang B Lin J Zhang W

Aims

The aim of this study was to evaluate the performance of metagenomic next-generation sequencing (mNGS) in detecting pathogens from synovial fluid of prosthetic joint infection (PJI) patients.

Methods

A group of 75 patients who underwent revision knee or hip arthroplasties were enrolled prospectively. Ten patients with primary arthroplasties were included as negative controls. Synovial fluid was collected for mNGS analysis. Optimal thresholds were determined to distinguish pathogens from background microbes. Synovial fluid, tissue, and sonicate fluid were obtained for culture.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 635 - 644
1 Oct 2020
Lemaignen A Grammatico-Guillon L Astagneau P Marmor S Ferry T Jolivet-Gougeon A Senneville E Bernard L

Aims

The French registry for complex bone and joint infections (C-BJIs) was created in 2012 in order to facilitate a homogeneous management of patients presented for multidisciplinary advice in referral centres for C-BJI, to monitor their activity and to produce epidemiological data. We aimed here to present the genesis and characteristics of this national registry and provide the analysis of its data quality.

Methods

A centralized online secured database gathering the electronic case report forms (eCRFs) was filled for every patient presented in multidisciplinary meetings (MM) among the 24 French referral centres. Metrics of this registry were described between 2012 and 2016. Data quality was assessed by comparing essential items from the registry with a controlled dataset extracted from medical charts of a random sample of patients from each centre. Internal completeness and consistency were calculated.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 211 - 218
1 May 2020
Hashimoto A Miyamoto H Kobatake T Nakashima T Shobuike T Ueno M Murakami T Noda I Sonohata M Mawatari M

Aims

Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation.

Methods

Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 106 or 43.0 (SD 8.4) x 105 colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 106  or 72.0 (SD 4.2) x 105  CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 554 - 562
1 Sep 2020
Masters J Metcalfe D Ha JS Judge A Costa ML

Aims

This study explores the reported rate of surgical site infection (SSI) after hip fracture surgery in published studies concerning patients treated in the UK.

Methods

Studies were included if they reported on SSI after any type of surgical treatment for hip fracture. Each study required a minimum of 30 days follow-up and 100 patients. Meta-analysis was undertaken using a random effects model. Heterogeneity was expressed using the I2 statistic. Risk of bias was assessed using a modified Newcastle-Ottawa Scale (NOS) system.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 587 - 592
5 Sep 2020
Qin L Li X Wang J Gong X Hu N Huang W

Aims

This study aimed to explore whether serum combined with synovial interleukin-6 (IL-6) measurement can improve the accuracy of prosthetic joint infection (PJI) diagnosis, and to establish the cut-off values of IL-6 in serum and synovial fluid in detecting chronic PJI.

Methods

Patients scheduled to have a revision surgery for indications of chronic infection of knee and hip arthroplasties or aseptic loosening of an implant were prospectively screened before being enrolled into this study. The Musculoskeletal Infection Society (MSIS) definition of PJI was used for the classification of cases as aseptic or infected. Serum CRP, ESR, IL-6, and percentage of polymorphonuclear neutrophils (PMN%) and IL-6 in synovial fluid were analyzed. Statistical tests were performed to compare these biomarkers in the two groups, and receiver operating characteristic (ROC) curves and area under the curve (AUC) were analyzed for each biomarker.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 219 - 224
1 May 2020
Yang B Fang X Cai Y Yu Z Li W Zhang C Huang Z Zhang W

Aims

Preoperative diagnosis is important for revision surgery after prosthetic joint infection (PJI). The purpose of our study was to determine whether reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which is used to detect bacterial ribosomal RNA (rRNA) preoperatively, can reveal PJI in low volumes of aspirated fluid.

Methods

We acquired joint fluid samples (JFSs) by preoperative aspiration from patients who were suspected of having a PJI and failed arthroplasty; patients with preoperative JFS volumes less than 5 ml were enrolled. RNA-based polymerase chain reaction (PCR) and bacterial culture were performed, and diagnostic efficiency was compared between the two methods.According to established Musculoskeletal Infection Society (MSIS) criteria, 21 of the 33 included patients were diagnosed with PJI.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 236 - 241
1 May 2020
Li R Wang C Ji X Zheng Q Li X Ni M Zhang G Chen J

Aims

The purpose of this study was to validate our hypothesis that centrifugation may eliminate false-positive leucocyte esterase (LE) strip test results caused by autoimmune diseases in the diagnosis of knee infection.

Methods

Between January 2016 and May 2019, 83 cases, including 33 cases of septic arthritis and 50 cases of aseptic arthritis, were enrolled in this study. To further validate our hypothesis, another 34 cases of inflammatory arthritis from the Department of Rheumatology of our institution were also included. After aspiration, one drop of synovial fluid was applied to LE strips before and after centrifugation. The results were recorded after approximately three minutes according to the different colour grades on the colour chart. The differences of LE results between each cohort were analyzed.


Bone & Joint Research
Vol. 9, Issue 2 | Pages 79 - 81
1 Feb 2020
Alt V Rupp M Langer M Baumann F Trampuz A

Cite this article: Bone Joint Res. 2020;9(2):79–81.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 367 - 377
1 Aug 2019
Chen M Chang C Chiang-Ni C Hsieh P Shih H Ueng SWN Chang Y

Objectives

Prosthetic joint infection (PJI) is the most common cause of arthroplasty failure. However, infection is often difficult to detect by conventional bacterial cultures, for which false-negative rates are 23% to 35%. In contrast, 16S rRNA metagenomics has been shown to quantitatively detect unculturable, unsuspected, and unviable pathogens. In this study, we investigated the use of 16S rRNA metagenomics for detection of bacterial pathogens in synovial fluid (SF) from patients with hip or knee PJI.

Methods

We analyzed the bacterial composition of 22 SF samples collected from 11 patients with PJIs (first- and second-stage surgery). The V3 and V4 region of bacteria was assessed by comparing the taxonomic distribution of the 16S rDNA amplicons with microbiome sequencing analysis. We also compared the results of bacterial detection from different methods including 16S metagenomics, traditional cultures, and targeted Sanger sequencing.


Bone & Joint Research
Vol. 8, Issue 5 | Pages 199 - 206
1 May 2019
Romanò CL Tsuchiya H Morelli I Battaglia AG Drago L

Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma.

Cite this article: C. L. Romanò, H. Tsuchiya, I. Morelli, A. G. Battaglia, L. Drago. Antibacterial coating of implants: are we missing something? Bone Joint Res 2019;8:199–206. DOI: 10.1302/2046-3758.85.BJR-2018-0316.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 459 - 468
1 Oct 2019
Hotchen AJ Dudareva M Ferguson JY Sendi P McNally MA

Objectives

The aim of this study was to assess the clinical application of, and optimize the variables used in, the BACH classification of long-bone osteomyelitis.

Methods

A total of 30 clinicians from a variety of specialities classified 20 anonymized cases of long-bone osteomyelitis using BACH. Cases were derived from patients who presented to specialist centres in the United Kingdom between October 2016 and April 2017. Accuracy and Fleiss’ kappa (Fκ) were calculated for each variable. Bone involvement (B-variable) was assessed further by nine clinicians who classified ten additional cases of long bone osteomyelitis using a 3D clinical imaging package. Thresholds for defining multidrug-resistant (MDR) isolates were optimized using results from a further analysis of 253 long bone osteomyelitis cases.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 387 - 396
1 Aug 2019
Alt V Rupp M Lemberger K Bechert T Konradt T Steinrücke P Schnettler R Söder S Ascherl R

Objectives

Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study.

Methods

A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3.


Bone & Joint Research
Vol. 8, Issue 1 | Pages 3 - 10
1 Jan 2019
Hernandez P Sager B Fa A Liang T Lozano C Khazzam M

Objectives

The purpose of this study was to examine the bactericidal efficacy of hydrogen peroxide (H2O2) on Cutibacterium acnes (C. acnes). We hypothesize that H2O2 reduces the bacterial burden of C. acnes.

Methods

The effect of H2O2 was assessed by testing bactericidal effect, time course analysis, growth inhibition, and minimum bactericidal concentration. To assess the bactericidal effect, bacteria were treated for 30 minutes with 0%, 1%, 3%, 4%, 6%, 8%, or 10% H2O2 in saline or water and compared with 3% topical H2O2 solution. For time course analysis, bacteria were treated with water or saline (controls), 3% H2O2 in water, 3% H2O2 in saline, or 3% topical solution for 5, 10, 15, 20, and 30 minutes. Results were analyzed with a two-way analysis of variance (ANOVA) (p < 0.05).


Bone & Joint Research
Vol. 7, Issue 11 | Pages 609 - 619
1 Nov 2018
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives

Prosthetic joint infection (PJI) is a devastating complication following total joint arthroplasty. Non-contact induction heating of metal implants is a new and emerging treatment for PJI. However, there may be concerns for potential tissue necrosis. It is thought that segmental induction heating can be used to control the thermal dose and to limit collateral thermal injury to the bone and surrounding tissues. The purpose of this study was to determine the thermal dose, for commonly used metal implants in orthopaedic surgery, at various distances from the heating centre (HC).

Methods

Commonly used metal orthopaedic implants (hip stem, intramedullary nail, and locking compression plate (LCP)) were heated segmentally using an induction heater. The thermal dose was expressed in cumulative equivalent minutes at 43°C (CEM43) and measured with a thermal camera at several different distances from the HC. A value of 16 CEM43 was used as the threshold for thermal damage in bone.


Objectives

Irrigation is the cornerstone of treating skeletal infection by eliminating pathogens in wounds. A previous study shows that irrigation with normal saline (0.9%) and ethylenediaminetetraacetic acid (EDTA) could improve the removal of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) compared with normal saline (NS) alone. However, it is still unclear whether EDTA solution is effective against infection with drug-resistant bacteria.

Methods

We established three wound infection models (skin defect, bone-exposed, implant-exposed) by inoculating the wounds with a variety of representative drug-resistant bacteria including methicillin-resistant S. aureus (MRSA), extended spectrum beta-lactamase-producing E. coli (ESBL-EC), multidrug-resistant Pseudomonas aeruginosa (MRPA), vancomycin-resistant Enterococcus (VRE), multidrug-resistant Acinetobacter baumannii (MRAB), multidrug-resistant Enterobacter (MRE), and multidrug-resistant Proteus mirabilis (MRPM). Irrigation and debridement were repeated until the wound culture became negative. The operating times required to eliminate pathogens in wounds were compared through survival analysis.


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 19 - 24
1 Jan 2019
Thakrar RR Horriat S Kayani B Haddad FS

Aims

Prosthetic joint infections (PJIs) of the hip and knee are associated with significant morbidity and socioeconomic burden. We undertook a systematic review of the current literature with the aim of proposing criteria for the selection of patients for a single-stage exchange arthroplasty in the management of a PJI.

Material and Methods

A comprehensive review of the current literature was performed using the OVID-MEDLINE, EMBASE, and Cochrane Library databases and the search terms: infection and knee arthroplasty OR knee revision OR hip arthroplasty OR hip revision, and one stage OR single stage OR direct exchange. All studies involving fewer than ten patients and follow-up of less than two years in the study group were excluded as also were systematic reviews, surgical techniques, and expert opinions.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective

In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits.

Methods

The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 457 - 467
1 Jul 2018
Smith IDM Milto KM Doherty CJ Amyes SGB Simpson AHRW Hall AC

Objectives

Staphylococcus aureus (S. aureus) is the most commonly implicated organism in septic arthritis, a condition that may be highly destructive to articular cartilage. Previous studies investigating laboratory and clinical strains of S. aureus have demonstrated that potent toxins induced significant chondrocyte death, although the precise toxin or toxins that were involved was unknown. In this study, we used isogenic S. aureus mutants to assess the influence of alpha (Hla)-, beta (Hlb)-, and gamma (Hlg)-haemolysins, toxins considered important for the destruction of host tissue, on in situ bovine chondrocyte viability.

Methods

Bovine cartilage explants were cultured with isogenic S. aureus mutants and/or their culture supernatants. Chondrocyte viability was then assessed within defined regions of interest in the axial and coronal plane following live- and dead-cell imaging using the fluorescent probes 5-chloromethylfluorescein diacetate and propidium iodide, respectively, and confocal laser-scanning microscopy.


Bone & Joint Research
Vol. 7, Issue 8 | Pages 517 - 523
1 Aug 2018
Tsang STJ Gwynne PJ Gallagher MP Simpson AHRW

Objectives

Periprosthetic joint infection following joint arthroplasty surgery is one of the most feared complications. The key to successful revision surgery for periprosthetic joint infections, regardless of treatment strategy, is a thorough deep debridement. In an attempt to limit antimicrobial and disinfectant use, there has been increasing interest in the use of acetic acid as an adjunct to debridement in the management of periprosthetic joint infections. However, its effectiveness in the eradication of established biofilms following clinically relevant treatment times has not been established. Using an in vitro biofilm model, this study aimed to establish the minimum biofilm eradication concentration (MBEC) of acetic acid following a clinically relevant treatment time.

Materials and Methods

Using a methicillin-sensitive Staphylococcus aureus (MSSA) reference strain and the dissolvable bead assay, biofilms were challenged by 0% to 20% acetic acid (pH 4.7) for ten minutes, 20 minutes, 180 minutes, and 24 hours.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 79 - 84
1 Jan 2018
Tsang STJ McHugh MP Guerendiain D Gwynne PJ Boyd J Simpson AHRW Walsh TS Laurenson IF Templeton KE

Objectives

Nasal carriers of Staphylococcus (S.) aureus (MRSA and MSSA) have an increased risk for healthcare-associated infections. There are currently limited national screening policies for the detection of S. aureus despite the World Health Organization’s recommendations. This study aimed to evaluate the diagnostic performance of molecular and culture techniques in S. aureus screening, determine the cause of any discrepancy between the diagnostic techniques, and model the potential effect of different diagnostic techniques on S. aureus detection in orthopaedic patients.

Methods

Paired nasal swabs for polymerase chain reaction (PCR) assay and culture of S. aureus were collected from a study population of 273 orthopaedic outpatients due to undergo joint arthroplasty surgery.