The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group.Objectives
Methods
The aim of this study was to validate the use of three models of fracture fixation in the assessment of technical skills. We recruited 21 subjects (six experts, seven intermediates, and eight novices) to perform three procedures: application of a dynamic compression plate on a cadaver porcine model, insertion of an unreamed tibial intramedullary nail, and application of a forearm
An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable
We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged
Objectives. The aim of this study was to examine whether asymmetric loading
influences macrophage elastase (MMP12) expression in different parts
of a rat tail intervertebral disc and growth plate and if MMP12
expression is correlated with the severity of the deformity. Methods. A wedge deformity between the ninth and tenth tail vertebrae
was produced with an Ilizarov-type mini
We carried out limb lengthening in rabbits and then transplanted osteoblast-like cells derived from the tibial periosteum to the centres of distracted callus immediately after distraction had been terminated. Two weeks later the transaxial area ratio at the centre of the distracted callus and the bone mineral density (BMD) were significantly higher in the transplanted group, by 21% and 42%, respectively, than in the non-injected group or the group injected with physiological saline (p <
0.05). Callus BMD as a percentage of density in uninvolved bone was also significantly higher in the transplanted group (p <
0.05) than in the other two groups, by 27% and 20% in the second and fourth weeks, respectively (p <
0.05). Mechanically, the callus in the transplanted group tended to be stronger as shown by the three-point bending test although the difference in fracture strength was not statistically significant. Our results show that transplantation of osteoblast-like cells promotes maturity of the distracted callus as observed at the second and fourth weeks after lengthening. The method appears promising as a means of shortening the consolidation period of callus distraction and decreasing complications during limb lengthening with an
We examined the effect on bone mineral density (BMD) of a single dose of 3 mg/kg of the bisphosphonate, pamidronate (Novartis) in distraction osteogenesis in immature rabbits. Seventeen rabbits (9 control, 8 given pamidronate) were examined by dual-energy x-ray absorptiometry. There was a significant increase in the BMD in the pamidronate group compared with the control animals. The mean areal BMD (g/cm. 2. ) in the bone proximal and distal to the regenerate was increased by 40% and 39%, respectively, compared with the control group (p <
0.05). The BMD of the regenerate bone was increased by a mean of 43% (p <
0.05). There was an increase of 22% in the mean area of regenerate formed in the pamidronate group (p<
0.05). Histological examination of bone in nine rabbits (5 control, 4 pamidronate) showed an increase in osteoblastic rimming and mineralisation of the regenerate, increased formation of bone around the pin sites and an increase in the cortical width of the bone adjacent to the regenerate in the rabbits given pamidronate. Pamidronate had a markedly positive effect. It reduced the disuse osteoporosis normally associated with lengthening using an
We measured the insertion and extraction torque forces in a randomised study of 76 external fixation screws in 19 patients treated by hemicallotasis for osteoarthritis of the medial side of the knee. The patients were randomised to have either standard tapered screws (Orthofix 6/5 mm) or the same screws with hydroxyapatite (HA) coating. One patient had two standard and two HA-coated screws. All patients had an anterior
We developed a rat model of limb lengthening to study the basic mechanism of distraction osteogenesis, using a small monolateral
Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO.Objectives
Methods
The treatment of fractures of the proximal tibia is complex and makes great demands on the implants used. Our study aimed to identify what levels of primary stability could be achieved with various forms of osteosynthesis in the treatment of diaphyseal fractures of the proximal tibia. Pairs of human tibiae were investigated. An unstable fracture was simulated by creating a defect at the metaphyseal-diaphyseal junction. Six implants were tested in a uniaxial testing device (Instron) using the quasi-static and displacement-controlled modes and the force-displacement curve was recorded. The movements of each fragment and of the implant were recorded video-optically (MacReflex, Qualysis). Axial deviations were evaluated at 300 N. The results show that the nailing systems tolerated the highest forces. The lowest axial deviations in varus and valgus were also found for the nailing systems; the highest axial deviations were recorded for the buttress plate and the less invasive stabilising system (LISS). In terms of rotational displacement the LISS was better than the buttress plate. In summary, it was found that higher loads were better tolerated by centrally placed load carriers than by eccentrically placed ones. In the case of the latter, it appears advantageous to use additive procedures for medial buttressing in the early phase.
We undertook a study on eight arms from fresh cadavers to define the clinical usefulness of the lesser sigmoid notch as a landmark when reconstructing the length of the neck of the radius in replacement of the head with a prosthesis. The head was resected and its height measured, along with several control measurements. This was compared with The results were highly reproducible with intra- and interclass correlations of >
0.99. The mean difference between the measurement on the excised head and the distance from the stump of the neck and the lesser sigmoid notch was −0.02 mm (−1.24 to +0.97). This difference was not statistically significant (p = 0.78). The proximal edge of the lesser sigmoid notch provides a reliable landmark for positioning a replacement of the radial head and may have clinical application.
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
External fixation of distal tibial fractures is often associated with delayed union. We have investigated whether union can be enhanced by using recombinant bone morphogenetic protein-7 (rhBMP-7). Osteoinduction with rhBMP-7 and bovine collagen was used in 20 patients with distal tibial fractures which had been treated by external fixation (BMP group). Healing of the fracture was compared with that of 20 matched patients in whom treatment was similar except that rhBMP-7 was not used. Significantly more fractures had healed by 16 (p = 0.039) and 20 weeks (p = 0.022) in the BMP group compared with the matched group. The mean time to union (p = 0.002), the duration of absence from work (p = 0.018) and the time for which external fixation was required (p = 0.037) were significantly shorter in the BMP group than in the matched group. Secondary intervention due to delayed healing was required in two patients in the BMP group and seven in the matched group. RhBMP-7 can enhance the union of distal tibial fractures treated by external fixation.
The ability to predict load-bearing capacity during the consolidation phase in distraction osteogenesis by non-invasive means would represent a significant advance in the management of patients undergoing such treatment. Measurements of stiffness have been suggested as a promising tool for this purpose. Although the multidimensional characteristics of bone loading in compression, bending and torsion are apparent, most previous experiments have analysed only the relationship between maximum load-bearing capacity and a single type of stiffness. We have studied how compressive, bending and torsional stiffness are related to the torsional load-bearing capacity of healing callus using a common set of samples of bone regenerate from 26 sheep treated by tibial distraction osteogenesis. Our findings showed that measurements of torsional, bending and compressive stiffness were all suitable as predictors of the load-bearing capacity of healing callus. Measurements of torsional stiffness performed slightly better than those of compressive and bending stiffness.
Healing in cancellous metaphyseal bone might be different from
midshaft fracture healing due to different access to mesenchymal
stem cells, and because metaphyseal bone often heals without a cartilaginous
phase. Inflammation plays an important role in the healing of a
shaft fracture, but if metaphyseal injury is different, it is important
to clarify if the role of inflammation is also different. The biology
of fracture healing is also influenced by the degree of mechanical
stability. It is unclear if inflammation interacts with stability-related
factors. We investigated the role of inflammation in three different models:
a metaphyseal screw pull-out, a shaft fracture with unstable nailing
(IM-nail) and a stable external fixation (ExFix) model. For each,
half of the animals received dexamethasone to reduce inflammation,
and half received control injections. Mechanical and morphometric evaluation
was used.Objectives
Methods
The response of the muscle is critical in determining the functional outcome of limb lengthening. We hypothesised that muscle response would vary with age and therefore studied the response of the muscles during tibial lengthening in ten young and ten mature rabbits. A bromodeoxyuridine technique was used to identify the dividing cells. The young rabbits demonstrated a significantly greater proliferative response to the distraction stimulus than the mature ones. This was particularly pronounced at the myotendinous junction, but was also evident within the muscle belly. Younger muscle adapted better to lengthening, suggesting that in patients in whom a large degree of muscle lengthening is required it may be beneficial to carry out this procedure when they are young, in order to achieve the optimal functional result.
The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement, bone grafts or bone substitutes.
Recently, the use of bioactive glass to treat bone defects in infections
has been reported in a limited series of patients. However, no direct comparison
between this biomaterial and antibiotic-loaded bone substitute has
been performed. In this retrospective study, we compared the safety and efficacy
of surgical debridement and local application of the bioactive glass
S53P4 in a series of 27 patients affected by chronic osteomyelitis
of the long bones (Group A) with two other series, treated respectively
with an antibiotic-loaded hydroxyapatite and calcium sulphate compound
(Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded
demineralised bone matrix (Group C; n = 22). Systemic antibiotics
were also used in all groups. After comparable periods of follow-up, the control of infection
was similar in the three groups. In particular, 25 out of 27 (92.6%)
patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out
of 22 (86.3%) in Group C showed no infection recurrence at means
of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up,
respectively, while Group A showed a reduced wound complication
rate. Our results show that patients treated with a bioactive glass
without local antibiotics achieved similar eradication of infection
and less drainage than those treated with two different antibiotic-loaded
calcium-based bone substitutes. Cite this article:
Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures. In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal artery was at risk. In group B this injury was avoided. Comparison of the groups showed a significant difference (p <
0.001). We recommend the Retro-Fibular wire technique whereby wires are inserted into the tibia mid-way between the posteromedial border of the fibula and the tendo Achillis, at 30° to 45° to the sagittal plane, and introduced from a posterolateral to an anteromedial position. Subsequently, when using this technique in 30 patients, we have had no neurovascular complications or problems relating to tethering of the peroneal tendons.
This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and callus formation at the site of the defect. There was no significant difference between healing after conventional reaming or suction/irrigation reaming. A significant improvement in the quality of the callus was demonstrated by surgically placing captured reamings into the defect using a graft harvesting system attached to the aspirator device. This was confirmed by biomechanical testing of stiffness and strength. This study suggests it could be beneficial to fill cortical defects with reaming particles in clinical practice, if feasible.
We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron microscopy, followed by an examination of the compound muscle action potential (C-MAP) amplitude and the motor conduction velocity (MCV) of the tibial nerve on days 17 and 52. The P0 (a major myelin glycoprotein) mRNA expression level in the progesterone-treated group increased by 46.6% and 38.7% on days five and ten, respectively. On day 52, the nodal length in the progesterone-treated group was smaller than that in the control group, and the MCV of the progesterone-treated group had been restored to normal. Progesterone might accelerate the restoration of demyelination caused by nerve elongation by activating myelin synthesis.
Little is known about the increase in length of tendons in postnatal life or of their response to limb lengthening procedures. A study was carried out in ten young and nine adult rabbits in which the tibia was lengthened by 20% at two rates 0.8 mm/day and 1.6 mm/day. The tendon of the flexor digitorum longus (FDL) muscle showed a significant increase in length in response to lengthening of the tibia. The young rabbits exhibited a significantly higher increase in length in the FDL tendon compared with the adults. There was no difference in the amount of lengthening of the FDL tendon at the different rates. Of the increase in length which occurred, 77% was in the proximal half of the tendon. This investigation demonstrated that tendons have the ability to lengthen during limb distraction. This occurred to a greater extent in the young who showed a higher proliferative response, suggesting that there may be less need for formal tendon lengthening in young children.
We have undertaken a prospective study in patients with a fracture of the femoral shaft requiring intramedullary nailing to test the hypothesis that the femoral canal could be a potential source of the second hit phenomenon. We determined the local femoral intramedullary and peripheral release of interleukin-6 (IL-6) after fracture and subsequent intramedullary reaming. In all patients, the fracture caused a significant increase in the local femoral concentrations of IL-6 compared to a femoral control group. The concentration of IL-6 in the local femoral environment was significantly higher than in the patients own matched blood samples from their peripheral circulation. The magnitude of the local femoral release of IL-6 after femoral fracture was independent of the injury severity score and whether the fracture was closed or open. In patients who underwent intramedullary reaming of the femoral canal a further significant local release of IL-6 was demonstrated, providing evidence that intramedullary reaming can cause a significant local inflammatory reaction.
Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment