We measured the pressure distribution across the tibiofemoral and patellofemoral joints during total knee arthroplasty (TKA) using Fuji pressure-sensitive film (Prescale) in 51 patients (63 joints) comparing the results with those in 21 patients in whom Prescale was not used. We classified the stress-distribution patterns in the tibiofemoral joints into four types: normal, varus-valgus instability, rotational malalignment, and a combination of instability and
Valgus knee deformity can present a number of unique surgical challenges for the total knee arthroplasty (TKA) surgeon. Understanding the typical patterns of bone and soft-tissue pathology in the valgus arthritic knee is critical for appropriate surgical planning. This review aims to provide the knee arthroplasty surgeon with an understanding of surgical management strategies for the treatment of valgus knee arthritis.
Lateral femoral and tibial deficiencies, contracted lateral soft tissues, attenuated medial soft tissues, and multiplanar deformities may all be present in the valgus arthritic knee. A number of classifications have been reported in order to guide surgical management, and a variety of surgical strategies have been described with satisfactory clinical results. Depending on the severity of the deformity, a variety of TKA implant designs may be appropriate for use.
Regardless of an operating surgeon’s preferred surgical strategy, adherence to a step-wise approach to deformity correction is advised.
Cite this article:
Objectives
Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone.
Methods
Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.